0
Research Papers

Free Vibration of Curvilinearly Stiffened Shallow Shells

[+] Author and Article Information
Peng Shi

School of Aerospace Engineering,
Beijing Institute of Technology,
Beijing 100081, China
e-mail: shipeng010321@163.com

Rakesh K. Kapania

Mitchell Professor
Department of Aerospace
and Ocean Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg, VA 24060
e-mail: rkapania@vt.edu

C. Y. Dong

Professor
School of Aerospace Engineering,
Beijing Institute of Technology,
Beijing 100081, China
e-mail: cydong@bit.edu.cn

1Corresponding author.

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received September 30, 2013; final manuscript received December 2, 2014; published online January 27, 2015. Assoc. Editor: Marco Amabili.

J. Vib. Acoust 137(3), 031006 (Jun 01, 2015) (15 pages) Paper No: VIB-13-1337; doi: 10.1115/1.4029360 History: Received September 30, 2013; Revised December 02, 2014; Online January 27, 2015

The free vibration of curvilinearly stiffened shallow shells is investigated by the Ritz method. Based on the first-order shear deformation shell theory and three-dimensional (3D) curved beam theory, the strain and kinetic energies of the stiffened shells are introduced. The stiffener can be placed anywhere within the shell, without the need for having the stiffener and shell element nodes coincide. Numerical results with different geometrical shells and boundary conditions and different stiffener locations and curvatures are analyzed to verify the feasibility of the presented Ritz method for solving the problems. The results show good agreement with those using other methods, e.g., using a converged set of results obtained by Nastran.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Olson, M. D., and Hazell, C. R., 1977, “Vibration Studies on Some Integral Rib-Stiffened Plates,” J. Sound Vib., 50(1), pp. 43–61. [CrossRef]
Mukhopadhyay, M., 1981, “Stiffened Plate Plane Stress Elements for the Analysis of Ships' Structures,” Comput. Struct., 13(4), pp. 563–573. [CrossRef]
Palani, G. S., Iyer, N. R., and Rao, T. V. S. R. A., 1992, “An Efficient Finite-Element Model for Static and Vibration Analysis of Eccentrically Stiffened Plates Shells,” Comput. Struct., 43(4), pp. 651–661. [CrossRef]
Kapania, R. K., Li, J., and Kapoor, H., 2005, “Optimal Design of Unitized Panels With Curvilinear Stiffeners,” AIAA Paper No. 2005-7482. [CrossRef]
Peng, L. X., Liew, K. M., and Kitipornchai, S., 2006, “Buckling and Free Vibration Analyses of Stiffened Plates Using the FSDT Mesh-Free Method,” J. Sound Vib., 289(3), pp. 421–449. [CrossRef]
Holopainen, T. P., 1995, “Finite-Element Free-Vibration Analysis of Eccentrically Stiffened Plates,” Comput. Struct., 56(6), pp. 993–1007. [CrossRef]
Goswami, S., and Mukhopadhyay, M., 1995, “Finite Element Free Vibration Analysis of Laminated Composite Stiffened Shell,” J. Compos. Mater., 29(18), pp. 2388–2422. [CrossRef]
Ray, C., and Satsangi, S. K., 1996, “Finite Element Analysis of Laminated Hat-Stiffened Plates,” J. Reinf. Plast. Compos., 15(12), pp. 1174–1193. [CrossRef]
Sivasubramonian, B., Rao, G., and Krishnan, A., 1999, “Free Vibration of Longitudinally Stiffened Curved Panels With Cutout,” J. Sound Vib., 226(1), pp. 41–55. [CrossRef]
Nayak, A., and Bandyopadhyay, J., 2002, “On the Free Vibration of Stiffened Shallow Shells,” J. Sound Vib., 255(2), pp. 357–382. [CrossRef]
Leissa, A., 1973, “The Free Vibration of Rectangular Plates,” J. Sound Vib., 31(3), pp. 257–293. [CrossRef]
Leissa, A., and Kadi, A., 1971, “Curvature Effects on Shallow Shell Vibrations,” J. Sound Vib., 16(2), pp. 173–187. [CrossRef]
Leissa, A., Lee, J., and Wang, A., 1983, “Vibrations of Cantilevered Doubly-Curved Shallow Shells,” Int. J. Solids Struct., 19(5), pp. 411–424. [CrossRef]
Narita, Y., and Leissa, A. W., 1984, “Vibrations of Corner Point Supported Shallow Shells of Rectangular Planform,” Earthquake Eng. Struct. Dyn., 12(5), pp. 651–661. [CrossRef]
Liew, K., and Wang, C., 1993, “pb-2 Rayleigh–Ritz Method for General Plate Analysis,” Eng. Struct., 15(1), pp. 55–60. [CrossRef]
Lim, C., and Liew, K., 1994, “A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform,” J. Sound Vib., 173(3), pp. 343–375. [CrossRef]
Liew, K., and Lim, C., 1996, “Vibration of Doubly-Curved Shallow Shells,” Acta Mech., 114(1–4), pp. 95–119. [CrossRef]
Liew, K., Lim, C., and Kitipornchai, S., 1997, “Vibration of Shallow Shells: A Review With Bibliography,” ASME Appl. Mech. Rev., 50(8), pp. 431–444. [CrossRef]
Jiang, S., Yang, T., Li, W., and Du, J., 2013, “Vibration Analysis of Doubly Curved Shallow Shells With Elastic Edge Restraints,” ASME J. Vib. Acoust., 135(3), p. 034502. [CrossRef]
Qu, Y., Chen, Y., Chen, Y., Long, X., Hua, H., and Meng, G., 2013, “A Domain Decomposition Method for Vibration Analysis of Conical Shells With Uniform and Stepped Thickness,” ASME J. Vib. Acoust., 135(1), p. 011014. [CrossRef]
Laura, P. A. A., and Gutierrez, R. H., 1981, “A Note on Transverse Vibrations of Stiffened Rectangular-Plates With Edges Elastically Restrained against Rotation,” J. Sound Vib., 78(1), pp. 139–144. [CrossRef]
Wu, J. R., and Liu, W., 1988, “Vibration of Rectangular Plates With Edge Restraints and Intermediate Stiffeners,” J. Sound Vib., 123(1), pp. 103–113. [CrossRef]
Liew, K., Xiang, Y., Lim, M., and Kitipornchai, S., 1994, “Vibration of Rectangular Mindlin Plates With Intermediate Stiffeners,” ASME J. Vib. Acoust., 116(4), pp. 529–535. [CrossRef]
Liew, K., Xiang, Y., Kitipornchai, S., and Meek, J., 1995, “Formulation of Mindlin-Engesser Model for Stiffened Plate Vibration,” Comput. Methods Appl. Mech. Eng., 120(3), pp. 339–353. [CrossRef]
Berry, A., and Locqueteau, C., 1996, “Vibration and Sound Radiation of Fluid-Loaded Stiffened Plates With Consideration of In-Plane Deformation,” J. Acoust. Soc. Am., 100(1), pp. 312–319. [CrossRef]
Xiang, Y., Kitipornchai, S., Liew, K., and Lim, M., 1995, “Vibration of Stiffened Skew Mindlin Plates,” Acta Mech., 112(1–4), pp. 11–28. [CrossRef]
Molaghasemi, H., and Harik, I., 1996, “Free Vibration of Stiffened Sector Plates,” J. Sound Vib., 190(4), pp. 726–732. [CrossRef]
Mustafa, B., and Ali, R., 1989, “An Energy Method for Free Vibration Analysis of Stiffened Circular Cylindrical Shells,” Comput. Struct., 32(2), pp. 355–363. [CrossRef]
Jafari, A., and Bagheri, M., 2006, “Free Vibration of Non-Uniformly Ring Stiffened Cylindrical Shells Using Analytical, Experimental and Numerical Methods,” Thin-Walled Struct., 44(1), pp. 82–90. [CrossRef]
Qu, Y., Chen, Y., Long, X., Hua, H., and Meng, G., 2013, “A Modified Variational Approach for Vibration Analysis of Ring-Stiffened Conical–Cylindrical Shell Combinations,” Eur. J. Mech. A/Solids, 37, pp. 200–215. [CrossRef]
Liew, K., Ng, T., and Zhao, X., 2005, “Free Vibration Analysis of Conical Shells via the Element-Free kp-Ritz Method,” J. Sound Vib., 281(3), pp. 627–645. [CrossRef]
Zhao, X., and Liew, K., 2011, “Free Vibration Analysis of Functionally Graded Conical Shell Panels by a Meshless Method,” Compos. Struct., 93(2), pp. 649–664. [CrossRef]
Lei, Z., Liew, K., and Yu, J., 2013, “Large Deflection Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Plates by the Element-Free kp-Ritz Method,” Comput. Methods Appl. Mech. Eng., 256, pp. 189–199. [CrossRef]
Zhang, L., Lei, Z., Liew, K., and Yu, J., 2014, “Large Deflection Geometrically Nonlinear Analysis of Carbon Nanotube-Reinforced Functionally Graded Cylindrical Panels,” Comput. Methods Appl. Mech. Eng., 273, pp. 1–18. [CrossRef]
Cheng, R., Zhang, L., and Liew, K., 2014, “Modeling of Biological Population Problems Using the Element-Free kp-Ritz Method,” Appl. Math. Comput., 227, pp. 274–290. [CrossRef]
Zeng, H., and Bert, C. W., 2001, “A Differential Quadrature Analysis of Vibration for Rectangular Stiffened Plates,” J. Sound Vib., 241(2), pp. 247–252. [CrossRef]
Mecitoglu, Z., and Dokmeci, M. C., 1992, “Free Vibrations of a Thin, Stiffened, Cylindrical Shallow Shell,” AIAA J., 30(3), pp. 848–850. [CrossRef]
Cheng, S. P., and Dade, C., 1990, “Dynamic Analysis of Stiffened Plates and Shells Using Spline Gauss Collocation Method,” Comput. Struct., 36(4), pp. 623–629. [CrossRef]
Duc, N. D., 2013, “Nonlinear Dynamic Response of Imperfect Eccentrically Stiffened FGM Double Curved Shallow Shells on Elastic Foundation,” Compos. Struct., 99, pp. 88–96. [CrossRef]
Duc, N. D., and Cong, P. H., 2013, “Nonlinear Dynamic Response of Imperfect Symmetric Thin Sigmoid-Functionally Graded Material Plate With Metal-Ceramic-Metal Layers on Elastic Foundation,” J. Vib. Control, pp. 1–10. [CrossRef]
Duc, N. D., and Quan, T. Q., 2013, “Nonlinear Dynamic Analysis of Imperfect Functionally Graded Material Double Curved Thin Shallow Shells With Temperature-Dependent Properties on Elastic Foundation,” J. Vib. Control, pp. 1–23. [CrossRef]
Huy Bich, D., Dinh Duc, N., and Quoc Quan, T., 2014, “Nonlinear Vibration of Imperfect Eccentrically Stiffened Functionally Graded Double Curved Shallow Shells Resting on Elastic Foundation Using the First Order Shear Deformation Theory,” Int. J. Mech. Sci., 80, pp. 16–28. [CrossRef]
Tamijani, A. Y., and Kapania, R. K., 2012, “Chebyshev–Ritz Approach to Buckling and Vibration of Curvilinearly Stiffened Plate,” AIAA J., 50(5), pp. 1007–1018. [CrossRef]
Tamijani, A. Y., and Kapania, R. K., 2010, “Buckling and Static Analysis of Curvilinearly Stiffened Plates Using Mesh-Free Method,” AIAA J., 48(12), pp. 2739–2751. [CrossRef]
Tamijani, A. Y., and Kapania, R. K., 2010, “Vibration of Plate With Curvilinear Stiffeners Using Mesh-Free Method,” AIAA J., 48(8), pp. 1569–1581. [CrossRef]
Tamijani, A. Y., McQuigg, T., and Kapania, R. K., 2010, “Free Vibration Analysis of Curvilinear-Stiffened Plates and Experimental Validation,” J. Aircr., 47(1), pp. 192–200. [CrossRef]
Martini, L., and Vitaliani, R., 1988, “On the Polynomial Convergent Formulation of a C0 Isoparametric Skew Beam Element,” Comput. Struct., 29(3), pp. 437–449. [CrossRef]
Ding, Z., 1996, “Natural Frequencies of Rectangular Plates Using a Set of Static Beam Functions in Rayleigh–Ritz Method,” J. Sound Vib., 189(1), pp. 81–87. [CrossRef]
Chung, H., 1981, “Free Vibration Analysis of Circular Cylindrical Shells,” J. Sound Vib., 74(3), pp. 331–350. [CrossRef]
Reddy, J. N., 2003, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL.
Rao, P. S., Sinha, G., and Mukhopadhyay, M., 1993, “Vibration of Submerged Stiffened Plates by the Finite Element Method,” Int. Shipbuild. Prog., 40(423), pp. 261–292.
Samanta, A., and Mukhopadhyay, M., 2004, “Free Vibration Analysis of Stiffened Shells by the Finite Element Technique,” Eur. J. Mech. A/Solids, 23(1), pp. 159–179. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Geometry and coordinate system of a doubly curved shallow shell

Grahic Jump Location
Fig. 2

A space curve on a shell

Grahic Jump Location
Fig. 3

A plate with a curvilinear eccentric stiffener: E = 73 GPa, ρ = 2837 kg/m3, μ = 0.33, hs = 6.25 mm, hf = 22.4 mm, and bf = 4.06 mm

Grahic Jump Location
Fig. 4

A spherical shell with a curvilinear stiffener: E = 73 GPa, ρ = 2837 kg/m3, μ = 0.33, a = 1.5698 m, b = 1.5698 m, Rx = Ry = 2.54 m, hs = 12.5 mm, hf = 44.8 mm, and bf = 8.12 mm

Grahic Jump Location
Fig. 5

A spherical shell with concentric orthogonal stiffeners: E = 68.9 MPa, ρ = 7728.97 kg/m3, μ = 0.3, a = 1.5698 m, b = 1.5698 m, Rx = Ry = 2.54 m, hs = 99.451 mm, hf = 201.76 mm, and bf = 101.06 mm

Grahic Jump Location
Fig. 6

A cylindrical shell with curvilinear stiffeners: E = 73 GPa, ρ = 2837 kg/m3, μ = 0.33, a = 0.8 m, b = 0.8 m, Rx = 1 m, hs = 6.25 mm, hf = 89.6 mm, bf = 16.24 mm.

Grahic Jump Location
Fig. 7

A cylindrical shell with four curvilinear stiffeners: E = 73 GPa, ρ = 2837 kg/m3, μ = 0.33, a = 0.8 m, b = 1.2 m, Rx = 2.5 m, hf = 67.2 mm, and bf = 12.18 mm

Grahic Jump Location
Fig. 8

Effects of the stiffener size on the first four natural frequencies of a simply supported curvilinearly stiffened cylindrical shallow shell

Grahic Jump Location
Fig. 9

Effects of the stiffener size on the first four natural frequencies of a clamped curvilinearly stiffened cylindrical shallow shell

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In