Research Papers

Dynamics of a Superconducting Linear Slider

[+] Author and Article Information
Ignacio Valiente-Blanco

Instituto Pedro Juan de Lastanosa,
Avenida de la Universidad 30,
Leganés E-28911, Spain
e-mail: ivalient@ing.uc3m.es

Jose-Luis Perez-Diaz

Dto. de Ingeniería Mecánica,
Universidad Carlos III de Madrid,
Butarque, 15,
Leganés E-28911, Spain

Efren Diez-Jimenez

Dto. de Ingeniería Mecánica,
Universidad Carlos III de Madrid,
Butarque, 15,
Leganés E-28911, Spain

1Corresponding author.

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received May 29, 2013; final manuscript received October 20, 2014; published online November 14, 2014. Assoc. Editor: Philip Bayly.

J. Vib. Acoust 137(2), 021002 (Apr 01, 2015) (4 pages) Paper No: VIB-13-1183; doi: 10.1115/1.4028928 History: Received May 29, 2013; Revised October 20, 2014; Online November 14, 2014

In this paper, the dynamic behavior of a one degree-of-freedom (DOF) contactless linear slider based on superconducting magnetic levitation is experimentally analyzed. The device is intended for precision positioning of an optic mirror in cryogenic environments. Different prototypes of this device have been tested at cryogenic temperatures (77 K), and their mechanical behavior characterized in the sliding direction for forced and unforced oscillations. Experimental results reveal that the slider is self-stable at the initial equilibrium position and the dynamic behavior fits well an underdamped harmonic oscillator. Finally, the device showed great potential for horizontal vibration isolation, acting as a low-pass filter with a resonance at about 0.9 Hz.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Santos, L. V., Trava-Airoldi, V. J., Corat, E. J., Nogueira, J., and Leite, N. F., 2006, “DLC Cold Welding Prevention Films on a Ti6Al4V Alloy for Space Applications,” Surf. Coat. Technol., 200(8), pp. 2587–2593. [CrossRef]
Fleischer, N., Genut, M., Rapoport, L., and Tenne, R., 2003, “New Nanotechnology Solid Lubricants for Superior Dry Lubrication,” 10th European Space Mechanisms and Tribology Symposium, San Sebastián, Spain, Sept. 24–26, ESA Publications Division, Noordwijk, The Netherlands, pp. 65–66.
Devasia, S., Eleftheriou, E., and Reza Moheimani, S. O., 2007, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Technol.15(5), pp. 802–823. [CrossRef]
Choi, Y.-T., and Wereley, N. M., 2009, “Self-Powered Magnetorheological Dampers,” ASME J. Vib. Acoust., 131(4), p. 044501. [CrossRef]
Van Den Dool, T. C., Hamelinck, R. F. M. M., Kruizinga, B., Gielesen, W. L. M., Braam, B. C., Nijenhuis, J. R., Loix, N., Luyckx, S., van Loon, D., Kooijman, P. P., and Swinyard, B. M., 2009, “Cryogenic Magnetic Bearing Scanning Mechanism Design for the SPICA/SAFARI Fourier Transform Spectrometer,” Proc. SPIE, 7739, p. 77391B. [CrossRef]
Ciocirlan, B., Beale, D., and Overfelt, R., 2001, “Simulation of Motion of an Electromagnetically Levitated Sphere,” J. Sound Vib., 242(4), pp. 559–575. [CrossRef]
Shah, B., Nudell, J., and Kao, K., 2011, “Semi-Active Particle-Based Damping Systems Controlled by Magnetic Fields,” J. Sound Vib., 330(2), pp. 182–193. [CrossRef]
Shakir, H., 2007, “Control Strategies and Motion Planning for Nanopositioning Applications With Multi-Axis Magnetic-Levitation Instruments,” PhD. thesis, Texas A&M University, College Station, TX, available at: https://repository.tamu.edu/bitstream/handle/1969.1/5942/etd-tamu-2007A-MEEN-Shakir.pdf?sequence=1&isAllowed=y.
Arkadiev, V., 1947, “A Floating Magnet,” Nature, 160, p. 330. [CrossRef] [PubMed]
Perez-Diaz, J.-L., Diez-Jimenez, E., Valiente-Blanco, I., and Herrero-de-Vicente, J., 2013, “Stable Thrust on a Finite-Sized Magnet Above a Meissner Superconducting Torus,” J. Appl. Phys.113(6), p. 063907. [CrossRef]
Earnshaw, S., 1842, “On the Nature of the Molecular Forces Which Regulate the Constitution of the Lumiferous Ether,” Trans. Cambridge Philos. Soc., 7, pp. 97–112.
Inoue, T., Ishida, Y., and Tsumura, T., 2009, “Vibration of the Rigid Rotor Supported by a Repulsive Magnetic Bearing (Influences of Magnetic Anisotropies of Magnets),” ASME J. Vib. Acoust.131(3), p. 031002. [CrossRef]
Tonoli, A., Amati, N., Impinna, F., and Detoni, J. G., 2011, “A Solution for the Stabilization of Electrodynamic Bearings: Modeling and Experimental Validation,” ASME J. Vib. Acoust., 133(2), p. 021004. [CrossRef]
Mulcahy, T. M., Hull, J. R., Ulherka, K. L., Niemann, R. C., Abboud, R. G., Juna, J. P., and Lockwood, J. A., 1999, “Flywheel Energy Storage Advances Using HTS Bearings,” IEEE Trans. Appl. Supercond., 9(2), pp. 297–300. [CrossRef]
Werfel, F. N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., and Schirrmeister, P., 2012, “Superconductor Bearings, Flywheels and Transportation,” Supercond. Sci. Technol., 25(1), p. 014007. [CrossRef]
Wang, H., Jiang, S., and Shen, Z., 2009, “The Dynamic Analysis of an Energy Storage Flywheel System With Hybrid Bearing Support,” ASME J. Vib. Acoust., 131(5), p. 051006. [CrossRef]
Siems, S. O., and Canders, W.-R., 2005, “Advances in the Design of Superconducting Magnetic Bearings for Static and Dynamic Applications,” Supercond. Sci. Technol., 18(2), p. S86. [CrossRef]
Hull, J. R., 2000, “Superconducting Bearings,” Supercond. Sci. Technol., 13(2), pp. R1–R14. [CrossRef]
Postrekhin, E., and Wilson, T., 1999, “Vibration Isolation for Space Structures Using HTS-Magnet Interaction,” IEEE Trans. Appl. Supercond., 9(2), pp. 908–910. [CrossRef]
Iizuka, T., and Fujita, H., 1997, “Precise Positioning of a Micro Conveyor Based on Superconducting Magnetic Levitation,” IEEE International Symposium on Micromechanotronics and Human Science, Nigoya, Japan, Oct 5–8, pp. 131–135. [CrossRef]
Perez-Diaz, J. L., Valiente-Blanco, I., Diez-Jimenez, E., and Sanchez-Garcia-Casarrubios, J., 2014, “Superconducting Noncontact Device for Precision Positioning,” IEEE/ASME Trans. Mechatronics, 19(2), pp. 598–605. [CrossRef]
Bingham, G., Latvakoski, H., and Wellard, S., 2003, “Far-Infrared Spectroscopy of the Troposphere (FIRST): Sensor Development and Performance Drivers,” Proc. SPIE, 5157(190), pp. 143–153. [CrossRef]
Pérez-Díaz, J.-L., García-Prada, J. C., Díez-Jiménez, E., Valiente-Blanco, I., Sander, B., Timm, L., Sánchez-García-Casarrubios, J., Serrano, J., Romera, F., Argelaguet-Vilaseca, H., and González-de-María, D., 2012, “Non-Contact Linear Slider for Cryogenic Environment,” Mech. Mach. Theory, 49, pp. 308–314. [CrossRef]
Valiente-Blanco, I., Diez-Jimenez, E., and Perez-Diaz, J., 2013, “Engineering and Performance of a Contactless Linear Slider Based on Superconducting Magnetic Levitation for Precision Positioning,” Mechatronics, 23(8), pp. 1051–1060. [CrossRef]
Nagaya, K., Tsukagoshi, M., and Murakami, M., 1997, “Vibration Control for a High-Tc Superconducting Non-Linear Levitation System,” J. Sound Vib., 208(2), pp. 299–311. [CrossRef]
Sasaki, S., and Shimada, K., 2012, “Vibration Transmission Analysis on a Superconducting Seismic Isolation Device With PM and Copper Plate Systems,” IEEE Trans. Appl. Supercond., 22(3), p. 3600804. [CrossRef]
Tonoli, A., and Bornemann, H. J., 1998, “Analysis of Losses Due to Rotor Vibrations in a High-Tc Superconducting Flywheel System,” J. Sound Vib., 212(4), pp. 649–662. [CrossRef]
Valiente-Blanco, I., Diez-Jimenez, E., Cristache, C., Alvarez-Valenzuela, M. A., and Perez-Diaz, J. L., 2014, “Characterization and Improvement of Axial and Radial Stiffness of Contactless Thrust Superconducting Magnetic Bearings,” Tribol. Lett., 54(3), pp. 213–220. [CrossRef]
Moon, F. C., Weng, K.-C., and Chang, P.-Z., 1989, “Dynamic Magnetic Forces in Superconducting Ceramics,” J. Appl. Phys., 665(11), pp. 5643–5645. [CrossRef]
Shimizu, T., Sueyoshi, M., Kawana, R., Sugiura, T., and Yoshizawa, M., 2007, “Internal Resonance of a Rotating Magnet Supported by a High-Tc Superconducting Bearing,” IEEE Trans. Appl. Supercond., 17(2), pp. 166–2169. [CrossRef]
Moon, F. C., and Chang, P. Z., 1995, Superconducting Levitation. Applications to Bearings and Magnetic Transportation, Wiley-VCH, Weinheim, Germany.
Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., 1987, “Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure,” Phys. Rev. Lett., 58(9), pp. 908–910. [CrossRef] [PubMed]
Sheahen, T. P., 1994, Introduction to High-Temperature Superconductivity, Plenum Press, New York.


Grahic Jump Location
Fig. 1

Picture of the device: (1) YBaCuO superconductor disks; (2) slider PM; (3) coils; and (4) optic mirror cube

Grahic Jump Location
Fig. 2

Sketch of the experimental setup: (1) YBaCuO superconductor disks; (2) slider, PM; (3) coils; (4) laser triangulator ILD 1402; (5) polished aluminum mirror cube; (6) lab-jack stand; (7) optic table; and (8) liquid nitrogen vessel. d: distance between the superconducting disks and HFC: height of field cooling.

Grahic Jump Location
Fig. 3

Position X versus DC current in the coil for different values of d. T = 77 K and HFC = 3 mm in all cases.

Grahic Jump Location
Fig. 4

Position X versus time for an unforced oscillation of the slider. T = 77 K, d = 84 mm, and HFC = 3 mm. Reference amplitude of the oscillation about 10 mm.

Grahic Jump Location
Fig. 5

Power spectrum versus frequency of the Lomb-normalized periodogram of the signal in Fig. 4.

Grahic Jump Location
Fig. 6

Speed versus position X of the slider is represented by gray line. The ideal response of a harmonic oscillator with ξ = 0.18 and ω0 = 0.93 is represented by the black dashed line.

Grahic Jump Location
Fig. 7

Transmissibility versus frequency ratio. Displacement amplitude for f ∼0 Hz is approximately 2.3 mm. Dashed line represent transmissibility for a harmonic oscillator with ξ = 0.18 and ω0 = 0.93 Hz.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In