Johns, P. B., and Beurle, R. L., 1971, “Numerical Solution of 2-Dimensional Scattering Problems Using a Transmission-Line Matrix,” Proc. IEEE, 118(9), pp. 1203–1209.
[CrossRef]Cogan, D., O'Connor, W., and Pulko, S., 2006, Transmission Line Matrix in Computational Mechanics, CRC Press, Taylor & Francis Group, Boca Raton, FL, pp. 102–104.
Scott, I., and de Cogan, D., 2008, “An Improved Transmission Line Matrix Model for the 2D Ideal Wedge Benchmark Problem,” J. Sound Vib., 311(3–5), pp. 1213–1227.
[CrossRef]Kagawa, Y., Tsuchiya, T., Fujii, B., and Fujioka, K., 1998, “Discrete Huygens' Model Approach to Sound Wave Propagation,” J. Sound Vib., 218(3), pp. 419–444.
[CrossRef]Portí, J. A., and Morente, J. A., 2001, “A Three-Dimensional Symmetrical Condensed TLM Node for Acoustics,” J. Sound Vib., 241(2), pp. 207–222.
[CrossRef]Kagawa, Y., Tsuchiya, T., Hara, T., and Tsuji, T., 2001, “Discrete Huygens' Modelling Simulation of Sound Wave Propagation in Velocity Varying Environments,” J. Sound Vib., 246(3), pp. 419–439.
[CrossRef]Chai, L., and Kagawa, Y., 2007, “Discrete Huygens' Modeling for the Characterization of a Sound Absorbing Medium,” J. Sound Vib., 304(3–5), pp. 587–605.
[CrossRef]Guillaume, G., Picaut, J., Dutilleux, G., and Gauvreau, B., 2011, “Time-Domain Impedance Formulation for Transmission Line Matrix Modelling of Outdoor Sound Propagation,” J. Sound Vib., 330(26), pp. 6467–6481.
[CrossRef]Yiyu, T., Inoguchi, Y., Sugawara, E., Otani, M., Iwaya, Y., Sato, Y., Matsuoka, H., and Tsuchiya, T., 2010, “A Real-Time Sound Field Renderer Based on Digital Huygens' Model,” J. Sound Vib., 330(17), pp. 4302–4312.
[CrossRef]Katsamanis, A., and Maragos, P., 2008, “A Fricative Synthesis Investigations Using the Transmission Line Matrix Method,” J. Acoust. Soc. Am., 123(5), p. 3741
[CrossRef]Hoefer, W. J., 1985, “The Transmission-Line Matrix Method—Theory and Applications,” IEEE Trans. Microwave Theory Tech., 33(10), pp. 882–893.
[CrossRef]Fontana, F., and Rocchesso, D., 2001, “Signal-Theoretic Characterization of Waveguide Mesh Geometries for Models of Two-Dimensional Wave Propagation in Elastic Media,” IEEE Trans. Speech Audio Process., 9(2), pp. 152–161.
[CrossRef]Campos, G. R., and Howard, D. M., 2005, “On the Computational Efficiency of Different Waveguide Mesh Topologies for Room Acoustic Simulation,” IEEE Trans. Speech Audio Process., 13(5), pp. 1063–1072.
[CrossRef]Murphy, D., Kelloniemi, A., Mullen, J., and Shelley, S., 2007, “Acoustic Modeling Using the Digital Waveguide Mesh,” IEEE Sig. Process. Mag., 24(2), pp. 55–66.
[CrossRef]Savioja, L., and Välimäki, V., 2003, “Interpolated Rectangular 3-D Digital Waveguide Mesh Algorithms With Frequency Warping,” IEEE Trans. Speech Audio Process., 11(6), pp. 783–789.
[CrossRef]Fontana, F., 2003, “Computation of Linear Filter Networks Containing Delay-Free Loops, With an Application to the Waveguide Mesh,” IEEE Trans. Speech Audio Process., 13(5), pp. 774–782.
[CrossRef]Speed, M. D. A., 2008, “Modelling Sound Propagation in the Vocal Tract With a Three-Dimensional Digital Waveguide Mesh,” Master's thesis, University of York, Heslington, UK.
Speed, M., Murphy, D., and Howard, D., 2013, “Three-Dimensional Digital Waveguide Mesh Simulation of Cylindrical Vocal Tract Analogs,” IEEE Trans. Audio, Speech, Lang. Process., 21(2), pp. 449–455.
[CrossRef]Speed, M., Murphy, D., and Howard, D., 2014, “Modeling the Vocal Tract Transfer Function Using a 3D Digital Waveguide Mesh,” IEEE/ACM Trans. Audio, Speech, Lang. Process., 22(2), pp. 453–464.
[CrossRef]Brandão, A. S., 2011, “Modelagem Acústica da Produção da voz Utilizando Técnicas de Visualização de Imagens Médicas Associadas a Métodos Numéricos,” PhD thesis, Universidade Federal Fluminense - Programa de Pós-Graduação em Engenharia Mecânica (PGMEC), Niterói, RJ, Brazil.
Brandão, A. S., Cataldo, E., and Leta, F. R., 2012, “Método de Línea de Transmisión Aplicado a la Acústica del Tracto Vocal a Través de un Modelo 3D Reconstruido,” Inf. Tecnol., 23(2), pp. 167–180.
[CrossRef]Motoki, K., 2002, “Three-Dimensional Acoustic Field in Vocal-Tract,” Acoust. Sci. Technol., 23(4), pp. 207–212.
[CrossRef]Nishimoto, H., and Akagi, M., 2006, “Effects of Complicated Vocal Tract Shapes on Vocal Tract Transfer Functions,” J. Signal Process., 10(4), pp. 267–270.
Dai, Z., Peng, Y., Mansy, H. A., Sandler, R. H., and Royston, T. J., 2014, “Comparison of Poroviscoelastic Models for Sound and Vibration in the Lungs,” ASME J. Vib. Acoust., 136(5), p. 050905.
[CrossRef]Kagawa, Y., Shimoyama, R., Yamabuchi, T., Murai, T., and Takarada, K., 1992, “Boundary Element Models of the Vocal Tract and Radiation Field and Their Response Characteristics,” J. Sound Vib., 157(3), pp. 385–403.
[CrossRef]Ozer, M. B., Acikgoz, S., Royston, T. J., Mansy, H. A., and Sandler, R. H., 2007, “Boundary Element Model for Simulating Sound Propagation and Source Localization Within the Lungs,” J. Acoust. Soc. Am., 122(1), pp. 657–671.
[CrossRef] [PubMed]Bapat, M. S., Shen, L., and Liu, Y. J., 2009, “Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Half-Space Acoustic Wave Problems,” Eng. Anal. Boundary Elem., 33(8–9), pp. 1113–1123.
[CrossRef]Bouillard, P., Almeida, J. P. M., Decouvreur, V., and Mertens, T., 2008, “Some Challenges in Computational Vibro-Acoustics: Verification, Validation and Medium Frequencies,” Comput. Mech., 42(2), pp. 317–326.
[CrossRef]Snakowska, A., and Jurkiewicz, J., 2010, “Efficiency of Energy Radiation From an Unflanged Cylindrical Duct in Case of Multimode Excitation,” Acta Acust. Acust., 96(3), pp. 416–424.
[CrossRef]Joseph, P., Nelson, P., and Fisher, M., 1999, “Active Control of Fan Tones Radiated From Turbofan Engines. I. External Error Sensors,” J. Acoust. Soc. Am., 106(2), pp. 766–778.
[CrossRef]Hendee, W. R., and Ritenour, E. R., 2002, Medical Imaging Physics, Wiley-Liss, New York, p. 312.
Brandão, A. S., Leta, F. R., and Cataldo, E., 2013, “3D Mesh Extraction for Transmission Line Matrix (TLM) Modelling,” Design and Analysis of Materials and Engineering Structures, Advanced Structured Materials, Vol. 32, Springer, Berlin, Germany, pp. 167–176.
Leta, F., Brandão, A., and Cataldo, E., 2011, “Semi-Automatic Segmentation of MR and CT Image Sequences Using a Self-Organizing Map and Texture Descriptors,” 18th International Conference on Systems, Signals and Image Processing (IWSSIP), Sarajevo, Bosnia and Herzegovina, June 16–18.
Ibanez, L., and Schroeder, W., 2005, The ITK Software Guide 2.4, 2nd ed., Kitware Inc., Clifton Park, NY.
Schroeder, W., Martin, K., and Lorensen, B., 2002, The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics, 3rd ed., Kitware Inc., Clifton Park, NY.
Mattis, P., and Kimball, S., “Gnu Image Manipulation Program,” accessed May 5, 2007,
http://www.gimp.org/Airas, M., Pulakka, H., Bäckström, T., and Alku, P., 2005, “A Toolkit for Voice Inverse Filtering and Parametrisation,” 9th European Conference on Speech Communication and Technology (Interspeech’2005—Eurospeech), Lisbon, Portugal, Sept. 4–8, pp. 2145–2148.
Rabiner, L. R., and Schafer, R. W., 1978, Digital Processing of Speech Signals, Prentice-Hall, Englewood Cliffs, NJ, Chap. 3.
Fant, G., and Båvegård, M., 1997, “Parametric Model of VT Area Functions: Vowels and Consonants,” Speech Music Hearing, 38(1), pp. 1–20.
Dang, J., and Honda, K., 1997, “Acoustic Characteristics of the Piriform Fossa in Models and Humans,” J. Acoust. Soc. Am., 101(1), pp. 456–465.
[CrossRef] [PubMed]Cataldo, E., Leta, F. R., Lucero, J., and Nicolato, L., 2006, “Synthesis of Voiced Sounds Using Low-Dimensional Models of the Vocal Cords and Time-Varying Subglottal Pressure,” Mech. Res. Commun., 33(2), pp. 250–260.
[CrossRef]Fant, G., 1970, The Acoustic Theory of Speech Production, 2nd ed., Mouton, The Hague, The Netherlands, p. 66.
Brandão, A. S., Cataldo, E., and Leta, F. R., 2007, “Um Novo Método Usando Autocorrelação Para Extração da Freqüência Fundamental em Sinais de voz,” Tendências em Mat. Apl. Computacional (TEMA), 8(2), pp. 191–200.
[CrossRef]Johns, P., and O'Brien, M., 1980, “Use of the Transmission Line Modelling Method to Solve Nonlinear Lumped Networks,” Radio Electron. Eng., 50(1/2), pp. 59–70.
[CrossRef]