0
Research Papers

Comparison Between a Wideband Fractal-Inspired and a Traditional Multicantilever Piezoelectric Energy Converter

[+] Author and Article Information
Davide Castagnetti

Department of Engineering Sciences
and Methods,
University of Modena and Reggio Emilia,
Reggio Emilia (RE) 42122, Italy
e-mail: davide.castagnetti@unimore.it

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received March 28, 2014; final manuscript received August 11, 2014; published online November 12, 2014. Assoc. Editor: Ryan L Harne.

J. Vib. Acoust 137(1), 011001 (Feb 01, 2015) (7 pages) Paper No: VIB-14-1102; doi: 10.1115/1.4028309 History: Received March 28, 2014; Revised August 11, 2014; Online November 12, 2014

Harvesting energy from ambient vibrations in order to power autonomous sensors is a challenging issue. The aim of this work is to compare the power output from an innovative wideband fractal-inspired piezoelectric converter to that from a traditional multicantilever piezoelectric energy converter. In a given frequency range, the converters are tuned on the same eigenfrequencies. The effect of the input acceleration and of the resistive load applied to the converters is investigated experimentally for each of the three eigenfrequencies in the range between 0 and 120 Hz. The fractal-inspired converter exhibits a significantly higher specific output power at the first and third of the eigenfrequencies investigated.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Topics: Fractals , Stress
Your Session has timed out. Please sign back in to continue.

References

Despesse, G., Jager, T., Chaillout, J. J., Léger, J. M., and Basrour, S., 2005, “Design and Fabrication of a New System for Vibration Energy Harvesting,” 2005 PhD Research in Microelectronics and Electronics, Lausanne, Switzerland, July 25–28, Vol. 1, pp. 225–228. [CrossRef]
Beeby, S. P., Tudor, M. J., and White, N. M., 2006, “Energy Harvesting Vibration Sources for Microsystems Applications,” Meas. Sci. Technol., 17(12), pp. R175–R195. [CrossRef]
Shafer, M. W., and Garcia, E., 2013, “The Power and Efficiency Limits of Piezoelectric Energy Harvesting,” ASME J. Vib. Acoust., 136(2), p. 021007. [CrossRef]
Glynne-Jones, F., Beeby, S. P., and White, N. M., 2001, “Towards a Piezoelectric Vibration-Powered Microgenerator,” IEEE Proceedings of Science, Measurement and Technology, 148(2), pp. 68–72. [CrossRef]
Zurn, S., Hsieh, M., Smith, G., Markus, D., Zang, M., Nam, Y., Arik, M., and Polla, D., 2001, “Fabrication and Structural Characterization of a Resonant Frequency PZT Microcantilever,” Smart Mater. Struct., 10(2), pp. 252–263. [CrossRef]
Roundy, S., Wright, P. K., and Rabaey, J., 2003,“A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,” Comput. Commun., 26(11), pp. 1131–1144. [CrossRef]
Erturk, A., 2009, “An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations,” Smart Mater. Struct., 18(2), p. 025009. [CrossRef]
Shen, D., 2007, “Analysis of Piezoelectric Materials for Energy Harvesting Devices Under High-g Vibrations,” Jpn. J. Appl. Phys., 46(10), pp. 6755–6760. [CrossRef]
Benasciutti, D., Moro, L., Zelenika, S., and Brusa, E., 2010, “Vibration Energy Scavenging Via Piezoelectric Bimorphs of Optimized Shapes,” Microsyst. Technol., 16(5), pp. 657–668. [CrossRef]
Song, H. J., 2009, “Energy Harvesting Utilizing Single-Crystal PMN-PT Material and Application to a Self-Powered Accelerometer,” ASME J. Mech. Des., 131(9), p. 091008. [CrossRef]
Ferrari, M., 2008, “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems,” Sens. Actuators, 142(1), pp. 329–335. [CrossRef]
Qi, S., Shuttleworth, R., and Oyadiji, S. O., 2009, “Multiple Resonances Piezoelectric Energy Harvesting Generator,” ASME Paper No. SMASIS2009-1455. [CrossRef]
Shahruz, S. M., 2006, “Design of Mechanical Band-Pass Filters for Energy Scavenging: Multi-Degree-of-Freedom Models,” Mechatronics, 16(9), pp. 523–531. [CrossRef]
Morris, D. J., Youngsman, J. M., Anderson, M. J., and Bahr, D. F., 2008, “A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism,” Smart Mater. Struct., 17(6), p. 065021. [CrossRef]
Bartsch, U., Gaspar, J., and Paul, O., 2010, “Low-Frequency Two-Dimensional Resonators for Vibrational Micro Energy Harvesting,” J. Micromech. Microeng., 20(3), p. 035016. [CrossRef]
Jang, S. J., Rustighi, E., Brennan, M., Lee, Y. P., and Jung, H. J., 2010, “Design of a 2DOF Vibrational Energy Harvesting Device,” J. Intell. Mater. Syst. Struct., 22(5), pp. 443–448. [CrossRef]
Tang, L., Yang, Y., and Soh, C. K., 2010, “Toward Broadband Vibration-Based Energy Harvesting,” J. Intell. Mater. Syst. Struct., 21(18), pp. 1867–1897. [CrossRef]
Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., and Taroni, A., 2008, “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems,” Sens. Actuators, 142(1), pp. 329–335. [CrossRef]
Adhikari, S., Friswell, M. I., and Inman, D. J., 2009, “Piezoelectric Energy Harvesting From Broadband Random Vibrations,” Smart Mater. Struct., 18(11), p. 115005. [CrossRef]
Lee, S., and Youn, B. D., 2011, “A New Piezoelectric Energy Harvesting Design Concept: Multimodal Energy Harvesting Skin,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 58(3), pp. 629–645. [CrossRef]
Van Blarigan, L., Danzl, P., and Moehlis, J., 2012, “A Broadband Vibrational Energy Harvester,” Appl. Phys. Lett., 100, p. 253904. [CrossRef]
Daqaq, M. F., 2010, “Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations,” J. Sound Vib., 329(18), pp. 3621–3631. [CrossRef]
Sebald, G., Kuwano, H., Guyomar, D., and Ducharne, B., 2011, “Experimental Duffing Oscillator for Broadband Piezoelectric Energy Harvesting,” Smart Mater. Struct., 20(10), p. 102001. [CrossRef]
Bryant, M., and Garcia, E., 2011, “Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester,” ASME J. Vib. Acoust., 133(1), p. 011010. [CrossRef]
Bibo, A., Li, G., and Daqaq, M. F., 2011, “Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator,” J. Intell. Mater. Syst. Struct., 22(6), pp. 577–592. [CrossRef]
Singh, K., Michelin, S., and de Langre, E., 2012, “Energy Harvesting From Axial Fluid-Elastic Instabilities of a Cylinder,” J. Fluids Struct., 30, pp. 159–172. [CrossRef]
Gammaitoni, L., Vocca, H., Neri, I., Travasso, F., and Orfei, F., 2011, “Vibration Energy Harvesting: Linear and Nonlinear Oscillator Approaches,” Sustainable Energy Harvesting Technologies—Past, Present and Future, Y. K.Tan, ed., InTech, Rijeka, Croatia, Chap. 7. [CrossRef]
Aladwani, A., Arafa, M., Aldraihem, O., and Baz, A., 2012, “Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier,” ASME J. Vib. Acoust., 134(3), p. 031004. [CrossRef]
Lee, A. J., Wang, Y., and Inman, D. J., 2013, “Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event,” ASME J. Vib. Acoust., 136(1), p. 011016. [CrossRef]
Castagnetti, D., 2011, “Fractal-Inspired Multi-Frequency Structures for Piezoelectric Harvesting of Ambient Kinetic Energy,” ASME J. Mech. Des., 133(11), p. 111005. [CrossRef]
Castagnetti, D., 2012, “Experimental Modal Analysis of Fractal-Inspired Multi-Frequency Piezoelectric Energy Converters,” Smart Mater. Struct., 21(9), p. 094009. [CrossRef]
Castagnetti, D., 2013, “A Wideband Fractal-Inspired Piezoelectric Energy Converter: Design, Simulation and Experimental Characterization,” Smart Mater. Struct., 22(9), p. 094024. [CrossRef]
Simulia, 2011, ABAQUS 6.11-2 Users’ Manual, Dassault Systémes, Waltham, MA.
Piezo System, Inc., Woburn, MA, www.piezo.com
Data Physics Corp., San Jose, CA, http://www.dataphysics.com
National Instruments, 2014, “Products and Services,” National Instruments Corp., Austin, TX, http://www.ni.com/products/
National Instruments, 2014, “LabVIEW System Design Software,” National Instruments Corp., Austin, TX, http://www.ni.com/labview/
Wang, H., Shan, X., Xie, T., and Fang, M., 2011, “Analyses of Impedance Matching for Piezoelectric Energy Harvester With A Resistive Circuit,” International Conference on Electronic and Mechanical Engineering and Information Technology, (EMEIT), Harbin, China, Aug. 12–14, pp. 1679–1683. [CrossRef]
De Pasquale, G., Somà, A., and Fraccarollo, F., 2012, “Piezoelectric Energy Harvesting for Autonomous Sensors Network on Safety-Improved Railway Vehicles,” Proc. Inst. Mech. Eng., Part C, 226(4), pp. 1107–1117. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The fractal-inspired (a) and the traditional (b) geometry for the piezoelectric converter prototypes

Grahic Jump Location
Fig. 2

Sketch of the prototype of the fractal-inspired piezoelectric converter

Grahic Jump Location
Fig. 3

Sketch of the prototype of the traditional multicantilever piezoelectric converter

Grahic Jump Location
Fig. 4

Prototype of the fractal-inspired piezoelectric converter

Grahic Jump Location
Fig. 5

Prototype of the traditional multicantilever piezoelectric converter

Grahic Jump Location
Fig. 6

Tip speed registered experimentally on the fractal-inspired and traditional converter, for an input acceleration equal to 9.81 m/s2

Grahic Jump Location
Fig. 7

Computational prediction of the first (a), second (b), and third (c) eigenmodes of the fractal-inspired converter

Grahic Jump Location
Fig. 8

Peak output voltage for lamina #1 of the fractal-inspired converter (gray columns) and from the corresponding cantilever of the traditional converter (white columns)

Grahic Jump Location
Fig. 9

Specific output power generated from the fractal-inspired converter (gray columns) and from the traditional multicantilever converter (white columns) for an input acceleration equal to 4.90 m/s2 (a)–(c) and 9.81 m/s2 (d)–(f)

Grahic Jump Location
Fig. 10

Specific output power generated by the fractal-inspired converter (solid circles) and by the traditional multicantilever converter (empty triangles), for an input acceleration equal to 4.90 m/s2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In