Chiba, T., and Kobayashi, H., 1985, “A Study of Modeling the Mechanical Snubber for Dynamic Analysis,” Transactions of the International Conference on Structural Mechanics in Reactor Technology, Vol. K, North-Holland, Amsterdam, pp. 189–194.
DeJong, R. G., Ermer, G. E., Paydenkar, C. S., and Remtema, T. M., 1998, “High Frequency Dynamic Properties of Rubber Isolation Elements,” Proceedings of Noise-Con'98, Ypsilanti, MI, April 5–8, pp. 383–390.
Shekhar, N. C., Hatwal, H., and Mallik, A. K., 1999, “Performance of Non-linear Isolators and Absorbers to Shock Excitations,” J. Sound Vib., 227(2), pp. 293–307.
[CrossRef]de Haan, Y. M., and Sluimer, G. M., 2001, “Standard Linear Solid Model for Dynamic and Time Dependent Behaviour of Building Materials,” Heron, 46(1), pp. 49–76.
Zhang, J., and Richards, C. M., 2006, “Dynamic Analysis and Parameter Identification of a Single Mass Elastomeric Isolation System Using a Maxwell–Voigt Model,” ASME J. Vibr. Acoust., 128(6), pp. 713–721.
[CrossRef]Kaul, S., 2012, “Dynamic Modeling and Analysis of Mechanical Snubbing,” ASME J. Vibr. Acoust., 134(2), p. 021020.
[CrossRef]Ikhouane, F., and Rodellar, J., 2007, Systems With Hysterisis: Analysis, Identification and Control Using the Bouc-Wen Model, 1st ed., John Wiley and Sons, New York.
Adhikari, S., and Pascual, B., 2009, “Eigenvalues of Linear Viscoelastic Systems,” J. Sound Vib., 325(4–5), pp. 1000–1011.
[CrossRef]Adhikari, S., 2010, “A Reduced Second-Order Approach for Linear Viscoelastic Oscillators,” ASME J. Appl. Mech., 77(4), p. 041003.
[CrossRef]Adhikari, S., and Pascual, B., 2011, “Iterative Methods for Eigenvalues of Viscoelastic Systems”, ASME J. Vibr. Acoust., 133(2), p. 021002.
[CrossRef]Lancaster, P., 1964, “On Eigenvalues of Matrices Dependent on a Parameter,” Numer. Math., 6(5), pp. 377–387.
[CrossRef]Fox, R. L., and Kapoor, M. P., 1968, “Rates of Change of Eigenvalues and Eigenvectors,” AIAA J., 6(12), pp. 2426–2429.
[CrossRef]Plaut, R. H., and Huseyin, K., 1973, “Derivatives of Eigenvalues and Eigenvectors in Non-Self-Adjoint Systems,” AIAA J., 11(2), pp. 250–251.
[CrossRef]Rudisill, C. S., and Chu, Y. Y., 1975, “Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors,” AIAA J., 13(6), pp. 834–837.
[CrossRef]Adelman, H. M., and Haftka, R. T., 1986, “Sensitivity Analysis for Discrete Structural Systems,” AIAA J., 24(5), pp. 823–832.
[CrossRef]Godoy, L.Taroco, E., and Feijoo, R., 1994, “Second-Order Sensitivity Analysis in Vibration and Buckling Problems,” Int. J. Numer. Methods Eng., 37(23), pp. 3999–4014.
[CrossRef]Gürgöze, M., Özgür, K., and Erol, H., 1995, “On the Eigenfrequencies of a Cantilevered Beam With a Tip Mass and In-Span Support,” Comput. Struct., 56(1), pp. 85–92.
[CrossRef]Gürgöze, M., 1998, “On the Sensitivities of the Eigenvalues of a Viscously Damped Cantilever Carrying a Tip Mass,” J. Sound Vib., 216(2), pp. 215–225.
[CrossRef]Vessel, K. N., Ram, Y. M., and Pang, S., 2005, “Sensitivity of Repeated Eigenvalues to Perturbations,” AIAA J., 43(3), pp. 582–585.
[CrossRef]Lee, T. H., 2007, “Adjoint Method for Design Sensitivity Analysis of Multiple Eigenvalues and Associated Eigenvectors,” AIAA J., 45(8), pp. 1998–2004.
[CrossRef]Griffith, D. T., and Miller, A. K., 2009, “Applications of Analytical Sensitivities of Principal Components in Structural Dynamics Analysis,” 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, May 4–7.
Cha, P. D., and Sabater, A. B., 2011, “Eigenvalue Sensitivities of a Linear Structure Carrying Lumped Attachments,” AIAA J., 49(11), pp. 2470–2481.
[CrossRef]Meidav, T., 1964, “Viscoelastic Properties of the Standard Linear Solid,” Geophys. Prospect., 121, pp. 80–99.
[CrossRef]Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw-Hill, New York.
Sherman, J., and Morrison, W. J., 1949, “Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix,” Ann. Math. Stat., 20, pp. 621.
Golub, G. H., and van Loan, C. F., 1996, Matrix Computations, Johns Hopkins University, Baltimore.
Marsden, J. E., and Tromba, A. J., 1988, Vector Calculus, W. H. Freeman, New York.
Gonçalves, P. J. P., Brennan, M. J., and Elliott, S. J., 2007, “Numerical Evaluation of High-Order Modes of Vibration in Uniform Euler-Bernoulli Beams,” J. Sound Vib., 301(3–5), pp. 1035–1039.
[CrossRef]Reddy, J. N., 1993, An Introduction to the Finite Element Method, McGraw-Hill, New York.
Edwards, C. H., and Penney, D. E., 2002, Multivariable Calculus With Matrices, Prentice-Hall, Upper Saddle River, NJ.