0
Research Papers

Design of Acoustic Metamaterial Devices Based on Inverse Method

[+] Author and Article Information
Ming Huang

e-mail: huangming@ynu.edu.cn

Jie Yang

Wireless Innovation Lab,
School of Information Science and Engineering,
Yunnan University,
Kunming 650091, China

Contributed by the Noise Control and Acoustics Division of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received June 19, 2012; final manuscript received January 31, 2013; published online June 18, 2013. Assoc. Editor: Theodore Farabee.

J. Vib. Acoust 135(5), 051024 (Jun 18, 2013) (5 pages) Paper No: VIB-12-1183; doi: 10.1115/1.4024559 History: Received June 19, 2012; Revised January 31, 2013

The inverse method based on the numerical solution of Laplace's equation is introduced for the design of acoustic metamaterial devices. An arbitrary shaped acoustic concentrator and an external cloak are designed numerically and validated by full wave simulation. Besides, an acoustic reciprocal cloak and a field rotator are proposed. Compared with the analytical method, the inverse method is much more universal, and arbitrary shaped acoustic metamaterial devices can be flexibly designed without any knowledge of the transformation equations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Shelby, R. A., Smith, D. R., and Schultz, S., 2001, “Experimental Verification of a Negative Index of Refraction,” Science, 292, pp. 77–79. [CrossRef]
Pendry, J. B., 2000, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett., 85, pp. 3966–3969. [CrossRef]
Al-Naib, A. I., Jansen, C., and Koch, M., 2008, “Thin-Film Sensing With Planar Asymmetric Metamaterial Resonators,” Appl. Phys. Lett., 93, p. 083507. [CrossRef]
Yang, J. J., Huang, M., Yu, J., and Lan, Y. Z., 2011, “Surface Whispering-Gallery Mode,” Europhys. Lett., 96, p. 57003. [CrossRef]
Huang, M., and Yang, J. J., 2011, “Microwave Sensor Using Metamaterials,” Wave Propagation, A.Petrin (ed.), InTech Inc. Press, Austria, pp. 13–36.
Chen, P. Y., and Alù, A., 2010, “Sub-Wavelength Elliptical Patch Antenna Loaded With μ-Negative Metamaterials,” IEEE Trans. Antenna. Propag., 58, pp. 2909–2919. [CrossRef]
Zheludev, N. I., 2010, “The Road Ahead for Metamaterials,” Science, 328, pp. 582–853. [CrossRef]
Zhu, R., Huang, G. L., and Hu, G. K., 2012, “Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials,” ASME J. Vib. Acoust., 134, p. 031006. [CrossRef]
Huang, G. L., and Sun, C. T., 2010, “Band Gaps in a Multiresonator Acoustic Metamaterial,” ASME J. Vib. Acoust., 132, p. 031003. [CrossRef]
Pendry, J. B., Schurig, D., and Smith, D. R., 2006, “Controlling Electromagnetic Fields,” Science, 312, pp. 1780–1782. [CrossRef]
Leonhardt, U., 2006, “Optical Conformal Mapping,” Science, 312, pp. 1777–1780. [CrossRef]
Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., and Smith, D. R., 2006, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314, pp. 977–979. [CrossRef]
Liu, R., Ji, C., Mock, J. J., Chin, J. Y., Cui, T. J., Smith, D. R., 2009, “Broadband Ground-Plane Cloak,” Science, 323, pp. 366–369. [CrossRef]
Liu, X., Li, C., Yao, K., Meng, X., Feng, W., Wu, B., and Li, F., 2009, “Experimental Verification of Broadband Invisibility Using a Cloak Based on Inductor-Capacitor Networks,” Appl. Phys. Lett., 95, p. 191107. [CrossRef]
Yang, J. J., Huang, M., Yang, C. F., and Yu, J., 2011, “Reciprocal Invisibility Cloak Based on Complementary Media,” Eur. Phys. J. D., 61, pp. 731–736. [CrossRef]
Yang, J. J., Huang, M., Yang, C. F., Xiao, Z., and Peng, J. H., 2009, “Metamaterial Electromagnetic Concentrators With Arbitrary Geometries,” Opt. Express, 17, pp. 19656–19661. [CrossRef]
Yang, C. F., Yang, J. J., Huang, M., Xiao, Z., and Peng, J. H., 2011, “An External Cloak With Arbitrary Cross Section Based on Complementary Medium and Coordinate Transformation,” Opt. Express, 19, pp. 1147–1156. [CrossRef]
Jiang, W. X., Cui, T. J., Yang, X. M., Ma, H. F., and Cheng, Q., 2011, “Shrinking an Arbitrary Object as One Desires Using Metamaterials,” Appl. Phys. Lett., 98, p. 204101. [CrossRef]
Rahm, M., Cummer, S. A., Schurig, D., Pendry, J. B., and Smith, D. R., 2008, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett., 100, p. 063903. [CrossRef]
Chen, H., Chan, C. T., and Sheng, P., 2010, “Transformation Optics and Metamaterials,” Nature Mater., 9, pp. 387–396. [CrossRef]
Chen, H. Y., and Chan, C. T., 2007, “Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials,” Appl. Phys. Lett., 91, p. 183518. [CrossRef]
Cummer, S. A., Popa, B., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., and Starr, A., 2008, “Scattering Theory Derivation of a 3D Acoustic Cloaking Shell,” Phys. Rev. Lett., 100, p. 024301. [CrossRef]
Chen, H. Y., and Chan, C. T., 2010, “Acoustic Cloaking and Transformation Acoustics,” J. Phys. D: Appl. Phys., 43, p. 113001. [CrossRef]
Norris, A. N., 2009, “Acoustic Metafluids,” J. Acoust. Soc. Am., 125, pp. 839–849. [CrossRef]
Popa, B. I., Zigoneanu, L., and Cummer, S. A., 2011, “Experimental Acoustic Ground Cloak in Air,” Phys. Rev. Lett., 106, p. 253901. [CrossRef]
Zhou, X., and Hu, G., 2006, “Design for Electromagnetic Wave Transparency With Metamaterials,” Phys. Rev. E, 74, p. 026607. [CrossRef]
Liu, B., and Huang, J. P., 2009, “Acoustically Conceal an Object With Hearing,” Eur. Phys. J. Appl. Phys., 48, p. 20501. [CrossRef]
Zhu, X., Liang, B., Kan, W., Zou, X., and Cheng, J., 2011, “Acoustic Cloaking by a Superlens With Single-Negative Materials,” Phys. Rev. Lett., 106, p. 014301. [CrossRef]
Yang, J. J., Huang, M., Yang, C., Peng, J. H., and Jun, C., 2010, “An External Acoustic Cloak With N-Sided Regular Polygonal Cross Section Based on Complementary Medium,” Comp. Mater. Sci., 49, pp. 9–14. [CrossRef]
Yang, J. J., Huang, M., Yang, C. F., and Cai, G. H., 2011, “A Metamaterial Acoustic Concentrator With Regular Polygonal Cross Section,” ASME J. Vib. Acoust., 133, p. 061016. [CrossRef]
Yang, T., Cao, R. F., Luo, X. D., and Ma, H. R., 2010, “Acoustic Superscatterer and Its Multilayer Realization,” Appl. Phys. A, 99, pp. 843–847. [CrossRef]
Ma, H., Qu, S., Xu, Z., and Wang, J., 2008, “Numerical Method for Designing Approximate Cloaks With Arbitrary Shapes,” Phys. Rev. E, 78, p. 036608. [CrossRef]
Chen, X., Fu, Y., and Yuan, N., 2009, “Invisible Cloak Design With Controlled Constitutive Parameters and Arbitrary Shaped Boundaries Through Helmholtz's Equation,” Opt. Express, 17, pp. 3581–3586. [CrossRef]
Hu, J., Zhou, X., and Hu, G., 2009, “Design Method for Electromagnetic Cloak With Arbitrary Shapes Based on Laplace’s Equation,” Opt. Express, 17, pp. 1308–1320. [CrossRef]
Hu, J., Zhou, X., and Hu, G., 2009, “A Numerical Method for Designing Acoustic Cloak With Arbitrary Shapes,” Comput. Mater. Sci., 46, pp. 708–712. [CrossRef]
Qiu, C. W., Novitsky, A., and Gao, L., 2010, “Inverse Design Mechanism of Cylindrical Cloaks Without Knowledge of the Required Coordinate Transformation,” J. Opt. Soc. Am. A, 27, pp. 1079–1082. [CrossRef]
Ding, Y, Liu, Z., Qiu, C., and Shi, J., 2007, “Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density,” Phys. Rev. Lett., 99, p. 093904. [CrossRef]
Christensen, J., and García de Abajo, F. J., 2012, “Negative Refraction and Backward Waves in Layered Acoustic Metamaterials,” Phys. Rev. B, 86, p. 024301. [CrossRef]
Lai, Y., Chen, H., Zhang, Z. Q., and, Chan, C. T., 2009, “Complementary Media Invisibility Cloak That Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett., 102, p. 093901. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic graph showing the coordinate transformation for the design of a circular cylindrical acoustic cloak

Grahic Jump Location
Fig. 2

(a) Pressure field distribution in the vicinity of an acoustic cloak with submarine shape. (b) Bulk modulus (κ') distribution in the transformation region.

Grahic Jump Location
Fig. 3

(a) Schematic diagram of an acoustic concentrator. (b) The acoustic pressure field distribution. (c) Acoustic intensity distribution.

Grahic Jump Location
Fig. 4

(a) Schematic graph showing the coordinate transformation of an external cloak. (b) Pressure field distribution in the vicinity of a system composed of the core media layer, the complementary layer, and the environment media layer. (c) A scheme to cloak an object with parameters ρo-1 and κo by placing its “antiobject” with parameters ρ'-1ρo-1 and κ'κo in the complementary media layer. (d) An object of ρo-1=2 and κo=0 is hidden by the external cloak. (e) Scattering pattern of the object.

Grahic Jump Location
Fig. 5

(a) Schematic diagram for the coordinate transformation of a reciprocal acoustic cloak. (b) Pressure field distribution in the computational domain.

Grahic Jump Location
Fig. 6

(a) Schematic graph for the coordinate transformation of a field rotator. (b) Pressure field distribution of the field rotator. (c) Scattering pattern of a scatterer located horizontally inside of the rotator. (d) Scattering pattern of the scatterer laid vertically in the homogeneous environment media. (e) Scattering pattern of the scatterer laid horizontally.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In