Ghanem, R. G., and Spanos, P. D., 1991, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York.
Panayirci, H. M., Pradlwarter, H. J., and Schueller, G. I., 2011, “Efficient Stochastic Finite Element Analysis Using Guyan Reduction,” Adv. Eng. Software, 42(4), pp. 187–196.
[CrossRef]Friswell, M. I., and Adhikari, S., 2000, “Derivatives of Complex Eigenvectors Using Nelson's Method,” AIAA J., 38(12), pp. 2355–2357.
[CrossRef]Soize, C., 2000, “A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics,” Probab. Eng. Mech., 15, pp. 277–294.
[CrossRef]Soize, C., Capiez-Lernount, E., Durand, J.-F., Fernandez., C., and Gagliardini., L., 2008, “Probabilistic Model Identification of Uncertainties in Computational Models for Dynamical Systems and Experimental Validation,” Comput. Methods Appl. Mech. Eng., 198, pp. 150–163.
[CrossRef]Adhikari, S., and Sarkar, A., 2009, “Uncertainty in Structural Dynamics: Experimental Validation of a Wishart Random Matrix Model,” J. Sound Vib., 323, pp. 802–825.
[CrossRef]Hinke, L., Dohnal, F., Mace, B. R., Waters, T. P., and Ferguson, N. S., 2009, “Component Mode Synthesis as a Framework for Uncertainty Analysis,” J. Sound Vib., 324, pp. 161–178.
[CrossRef]Bladh, R., Pierre, C., and Castanier, M. P., 2002, “Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling,” ASME J. Eng. Gas Turbines Power, 124, pp. 311–324.
[CrossRef]Lee, S.-Y., and Castanier, M. P., 2006, “Component-Mode-Based Monte Carlo Simulation for Efficient Probabilistic Vibration Analysis,” Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, May 1–4, AIAA Paper No. 2006-1990.
[CrossRef]Dohnal, F., Mace, B. R., and Ferguson, N. S., 2009, “Joint Uncertainty Propagation in Linear Structural Dynamics Using Stochastic Reduced Basis Methods,” AIAA J., 47, pp. 961–969.
[CrossRef]Tournour, M. A., Atalla, N., Chiello, O., and Sgard, F., 2001, “Validation, Performance, Convergence and Application of Free Interface Component Mode Synthesis,” Comput. Struct., 79, pp. 1861–1876.
[CrossRef]Craig, R. R., Jr., 2000, “Coupling of Substructure for Dynamic Analyses: An Overview,” Proceedings of the 41st AIAA/ASME/ASCE/AHSIASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA.
Feiner, D. M., and Griffin, J. H., 2002, “A Fundamental Model of Mistuning for a Single Family of Modes,” ASME J. Turbomach., 124, pp. 597–605.
[CrossRef]Moyroud, F., Fransson, T., and Jacquet-Richardet, G., 2002, “A Comparison of Two Finite Element Reduction Techniques for Mistuned Bladed Disks,” ASME J. Eng. Gas Turbines Power, 124, pp. 942–952.
[CrossRef]Mbaye, M., Soize, C., and Ousty, J.-P., 2010, “A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes,” ASME J. Eng. Gas Turbines Power, 132, p. 112502.
[CrossRef]Bladh, R., Castanier, M. P., and Pierre, C., 2001, “Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models,” ASME J. Eng. Gas Turbines Power, 123, pp. 89–99.
[CrossRef]Bah, M. T., Nair, P. B., Bhaskar, A., and Keane, A. J., 2003, “Stochastic Component Mode Synthesis,” Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, April 7–10, AIAA Paper No. 2003-1750.
[CrossRef]Xia, Z., and Tang, J., 2011, “Uncertainty Analysis of Structural Dynamics by Using Two-Level Gaussian Processes,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Denver, CO, November 11–17, ASME Paper No. IMECE2011-63708.
[CrossRef]Neal, R. M., 1998, “Regression and Classification Using Gaussian Process Priors,” Bayesian Statistics 6, J. M.Bernardo, ed., Oxford University, New York.
MacKay, D. J. C., 2003, Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge, UK.
Rasmussen, C. E., and Williams, C. K. I., 2006, Gaussian Processes for Machine Learning, MIT, Cambridge, MA.
DiazDelaO, F. A., and Adhikari, S., 2010, “Structural Dynamic Analysis Using Gaussian Process Emulators,” Eng. Comput., 27, pp. 580–605.
[CrossRef]DiazDelaO, F. A., and Adhikari, S., 2011, “Gaussian Process Emulators for the Stochastic Finite Element Method,” Int. J. Numer. Methods Eng., 87, pp. 521–540.
[CrossRef]Hasen, J., Murray-Smith, R., Johansen, T. A., 2005, “Nonparametric Identification of Linearizations and Uncertainty Using Gaussian Process Models—Application to Robust Wheel Slip Control,” Proceedings of the Joint 44th IEEE Conference on Decision and Control, and European Control Conference(CDC-ECC’05), Seville, Spain, December 12–15.
[CrossRef]Gregorcic, G., and Lightbody, G., 2009, “Gaussian Process Approach for Modeling of Nonlinear Systems,” Eng. Applic. Artif. Intell., 22, pp. 522–533.
[CrossRef]Azman, K., and Kocijan, J., 2009, “Fixed-Structure Gaussian Process Model,” Int. J. Syst. Sci., 40, pp. 1253–1262.
[CrossRef]Mohanty, S., Das, S., Chattopadhyay, A., and Peralta, P., 2009, “Gaussian Process Time Series Model for Life Prognosis of Metallic Structures,” J. Intell. Mater. Syst. Struct., 20, pp. 887–896.
[CrossRef]Kennedy, M. C., and O'Hagan, A., 2000, “Predicting the Output From a Complex Computer Code When Fast Approximations are Available,” Biometrika, 87, pp. 1–13.
[CrossRef]Sivia, D. S., and Skilling, J., 2006, Data Analysis—A Bayesian Tutorial, 2nd ed., Oxford University, New York.
Loredo, T. J., 1990, From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics, in Maximum Entropy and Bayesian Methods, Academic Publishers, Dordrecht, The Netherlands.
Mockus, J., Eddy, W., and Reklaitis, G., 1997, Bayesian Heuristic Approach to Discrete and Global Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Alvarez, M. A., and Lawrence, N. D., 2011, “Computationally Efficient Convolved Multiple Output Gaussian Processes,” J. Mach. Learn. Res., 12, pp. 1459–1500.
Kennedy, M. C., and O'Hagan, A., 2000, Supplementary Details on Bayesian Calibration of Computer Codes, University of Sheffield, Sheffield, UK.
Swiler, L. P., 2006, “Bayesian Methods in Engineering Design Problems,” Sandia National Laboratories, Paper No. SAND2005–3249.
Kennedy, M. C., and O'Hagan, A., 2001, “Bayesian Calibration of Computer Models,” J. R. Stat. Soc., Ser. B, 63, p. 425–464.
[CrossRef]Whitehead, D. S., 1998, “Maximum Factor by Which Forced Vibration of Blades Can Increase Due to Mistuning,” ASME J. Eng. Gas Turbines Power, 120, pp. 115–119.
[CrossRef]Kenyon, J. A., and Griffin, J. H., 2003, “Forced Response of Turbine Engine Bladed Disks and Sensitivity to Harmonic Mistuning,” ASME J. Eng. Gas Turbines Power, 125, pp. 113–120.
[CrossRef]Brooks, S. P., 1998, “Markov Chain Monte Carlo Method and Its Application,” J. R. Stat. Soc., Ser. D, 47(1), pp. 69–100.
[CrossRef]Bastos, L. S., and O'Hagan, A., 2009, “Diagnostics for Gaussian Process Emulators,” Technometrics, 51, pp. 425–438.
[CrossRef]