0
Research Papers

Band Gaps of a Two-Dimensional Periodic Graphenelike Structure

[+] Author and Article Information
Zi-Gui Huang

Associate Professor
e-mail: zghuang0119@nfu.edu.tw

Chun-Fu Su

Department of Mechanical Design Engineering
National Formosa University,
No. 64, Wenhua Rd. Huwei Township,
Yun-lin County 632, Taiwan

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received April 28, 2012; final manuscript received November 28, 2012; published online June 6, 2013. Assoc. Editor: Mahmoud Hussein.

J. Vib. Acoust 135(4), 041002 (Jun 06, 2013) (8 pages) Paper No: VIB-12-1122; doi: 10.1115/1.4023822 History: Received April 28, 2012; Revised November 08, 2012

This study constructs a new phononic crystal acoustic wave device that adopts a graphenelike structure and is composed of piezoelectric zinc oxide (ZnO) material. We employed the finite-element method to determine periodic boundary conditions. Following Bloch's theorem, we analyzed the acoustic wave propagation of the proposed graphenelike structure in the frequency domain to understand the band gap effect and oscillation behavior. We also investigated the band gap variation and modal distortion tendencies of the piezoelectric ZnO material in the two-dimensional graphenelike structure under the condition of changing chain structure diameters and bonding rod widths between the atoms columns to develop an optimal acoustic wave device.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., 2004, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306, pp. 666–669. [CrossRef] [PubMed]
Novoselov, K. S., Geim, A. K., Morozov, S. V., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., 2005, “Two Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 438, pp. 197–200. [CrossRef] [PubMed]
Kohlschütter, V., and Haenni, P., 1918, “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure,” Z. Anorg. Allg. Chem., 105(1), pp. 121–144. [CrossRef]
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N., M. R., and Geim, A. K., 2008, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, 320(5881), p. 1308. [CrossRef] [PubMed]
Ruess, G., and Vogt, F., 1948, “Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd,” Monatshefte für Chemie, 78(3–4), pp. 222–242. [CrossRef]
Geim, A. K., and Novoselov, K. S., 2007, “The Rise of Graphene,” Nature Mater., 6(3), pp. 183–191. [CrossRef]
Savage, N., 2009, “Researchers Unzip Carbon Nanotubes to Make Ribbons of Graphene: A New Route to the Narrow Grapheme Ribbons Needed in Electronics,” IEEE Spectrum, April 16, available at http://spectrum.ieee.org/semiconductors/materials/researchers-unzip-carbon-nanotubes-to-make-ribbons
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H., Hong, B. H., and Iijima, S., 2010, “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nat Nano5(8), pp. 574–578. [CrossRef]
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. H., and De Heer, W. A., 2004, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route Toward Graphene-Based Nanoelectronics,” J. Phys. Chem. B, 108(52), pp. 19912–19916 [CrossRef].
Han., M. Y., Özyilmaz, B., Zhang, Y., and Kim, P., 2007, “Energy Band-Gap Engineering of Graphene Nanoribbons,” Phys. Rev. Lett., 98, p. 206805. [CrossRef] [PubMed]
Yablonovitch, E., 1987, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., 58, pp. 2059–2062. [CrossRef] [PubMed]
John, S., 1987, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett., 58, pp. 2486–2489. [CrossRef] [PubMed]
Ho, K. M., Chan, C. T., and Soukoulis, C. M., 1990, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett., 65, pp. 3152–3155. [CrossRef] [PubMed]
Villeneuve, P. R., and Piché, M., 1992, “Photonic Band Gaps in Two-Dimensional Square Lattices: Square and Circular Rods,” Phys. Rev. B, 46, pp. 4973–4975. [CrossRef]
Johnson, S. G., and Joannopoulos, J. D., 2003, “Photonic Crystals: The Road From Theory to Practice,” Kluwer Academic Publishers, Boston.
Joannopoulos, J. D., Meade, R. D., and Winn, J. N., 1995, “Photonic Crystals: Molding the Flow of Light,” Princeton University Press, Princeton, NJ.
Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., and Joannopoulos, J. D., 1996, “High Transmission Through Sharp Bands in Photonic Crystal Wave Guides,” Phys. Rev. Lett., 77, pp. 3787–3790. [CrossRef] [PubMed]
Lakhtakia, A., Varadan, V. V., and Varadan, V. K., 1988, “Reflection Characteristics of an Elastic Slab Containing a Periodic Array of Circular Elastic Cylinders: P and SV Wave Analysis,” J. Acoust. Soc. Am., 83, pp. 1267–1275. [CrossRef]
Sigalas, M., and Ecconomou, E. N., 1992, “Elastic and Acoustic Wave Band Structure,” J. Sound Vib., 158, pp. 377–382. [CrossRef]
Sigalas, M., and Economou, E. N., 1993, “Band Structure of Elastic Waves in Two Dimensional Systems,” Solid State Commun., 86, pp. 141–143. [CrossRef]
Kushwaha, M. S., Halevi, P., Dobrzynski, L., and Diafari-Rouhani, B., 1993, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, pp. 2022–2025. [CrossRef] [PubMed]
Vasseur, J. O., Deymier, P. A., Frantziskonis, G., Hong, G., Djafari-Rouhani, B., and Dobrzynski, L. J., 1998, “Experimental Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Periodic Composite Media,” J. Phys.: Condens. Matter, 10, pp. 6051–6064. [CrossRef]
Robillard, J.-F., Muralidharan, K., Bucay, J., Deymier, P. A., Beck, W., and Barker, D., 2011, “Phononic Metamaterials for Thermal Management: An Atomistic Computational Study,” Chin. J. Phys., 49, pp. 448–461.
Sigalas, M. M., and Koukaras, E. N., 2012, “Phononic Bandgaps in Graphene-Based Materials,” Appl. Phys. Lett., 100, p. 203109. [CrossRef]
Farzbod, F., and Leamy, M. J., 2011, “Analysis of Bloch's Method in Structures With Energy Dissipation,” ASME J. Vib. Acoust., 133(5), p. 051010. [CrossRef]
Farzbod, F., and Leamy, M. J., 2011, “Analysis of Bloch's Method and the Propagation Technique in Periodic Structures,” ASME J. Vib. Acoust., 133(3), p. 031010. [CrossRef]
Zhu, R. G., Huang, L., and Hu, G. K., 2012, “Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials,” ASME J. Vib. Acoust., 134(3), p. 031006. [CrossRef]
COMSOL Multiphysics, 2009, Structural Mechanics, Manual, Comsol, AB, Stockholm, Sweden.
Huang, Z. G., and Chen, Z. Y., 2011, “Acoustic Waves in Two-Dimensional Phononic Crystals With Reticular Geometric Structures,” ASME J. Vib. Acoust., 133(3), p. 031011. [CrossRef]
Huang, Z. G., 2011, “Silicon-Based Filters, Resonators and Acoustic Channels With Phononic Crystal Structures,” J. Phys. D: Appl. Phys., 44, p. 245406. [CrossRef]
Wu, T.-T., Huang, Z. G., Tsai, T. C., and Wu, T. C., 2008, “Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface,” Appl. Phys. Lett., 93, p. 111902. [CrossRef]
Yudistira, D., Pennec, Y., Diafari-Rouhani, B., Dupont, S., and Laude, V., 2012, “Non-Radiative Complete Surface Acoustic Wave Bandgap for Finite-Depth Holey Phononic Crystal in Lithium Niobate,” Appl. Phys. Lett., 100, p. 061912. [CrossRef]
Tanaka, Y., Tomoyasu, Y., and Tamura, S. I., 2000, “Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch,” Phys. Rev. B, 62(11), pp. 7387–7392. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) The periodic two-dimensional graphenelike structure; (b) the Brillouin region of the rectangular lattice

Grahic Jump Location
Fig. 2

Diagram of the two-dimensional graphenelike structure

Grahic Jump Location
Fig. 3

The boundary settings of the two-dimensional graphenelike structure

Grahic Jump Location
Fig. 4

The error of the element number to the modal value

Grahic Jump Location
Fig. 5

The convergence tendency of the element number of the two-dimensional graphenelike structure

Grahic Jump Location
Fig. 6

Dispersion relationship with chain atom diameter = 0.4 mm

Grahic Jump Location
Fig. 7

Dispersion relationship with chain atom diameter = 0.5 mm

Grahic Jump Location
Fig. 8

Dispersion relationship with chain atom diameter = 0.6 mm

Grahic Jump Location
Fig. 9

Dispersion relationship with chain atom diameter = 0.7 mm

Grahic Jump Location
Fig. 10

Dispersion relationship with chain atom diameter = 0.8 mm

Grahic Jump Location
Fig. 11

Dispersion relationship with chain atom diameter = 0.9 mm

Grahic Jump Location
Fig. 12

Dispersion relationship with chain atom diameter = 1.0 mm

Grahic Jump Location
Fig. 13

Band gap distribution of the two-dimensional graphenelike structure in various sizes of chain atom diameter d

Grahic Jump Location
Fig. 14

Distribution of the normalized band gap width

Grahic Jump Location
Fig. 15

Band gap distribution of the two-dimensional graphenelike structure in various sizes of bonding rod width W

Grahic Jump Location
Fig. 16

The enlarge plot of dispersion relationship (Fig. 9) with chain atom diameter = 0.7 mm

Grahic Jump Location
Fig. 17

The corresponding oscillation structure of L1 in Fig. 16

Grahic Jump Location
Fig. 18

The corresponding oscillation structure of L2 in Fig. 16

Grahic Jump Location
Fig. 19

The corresponding oscillation structure of L3 in Fig. 16

Grahic Jump Location
Fig. 20

The corresponding oscillation structure of L4 in Fig. 16

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In