0
Research Papers

Electromagnetically-Induced Vibration in Particulate-Functionalized Materials

[+] Author and Article Information
T. I. Zohdi

Department of Mechanical Engineering,
6195 Etcheverry Hall,
University of California,
Berkeley, CA, 94720-1740

Such forces can arise from surrounding medium and the external electromagnetic fields.

The unit normal has been taken into account; thus the presence of a change in sign.

The superscript L is a time interval counter.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received April 21, 2012; final manuscript received October 26, 2012; published online March 28, 2013. Assoc. Editor: Mahmoud Hussein.

J. Vib. Acoust 135(3), 031007 (Mar 28, 2013) (8 pages) Paper No: VIB-12-1113; doi: 10.1115/1.4023251 History: Received April 21, 2012; Revised October 26, 2012

In many small-scale devices, the materials employed are functionalized (doped) with microscale and/or nanoscale particles, in order to deliver desired overall dielectric properties. In this work, we develop a reduced-order lumped-mass model to characterize the dynamic response of a material possessing a microstructure that is comprised of an electromagnetically-neutral binder with embedded electromagnetically-sensitive (charged) particles. In certain industrial applications, such materials may encounter external electrical loading that can be highly oscillatory. Therefore, it is possible for the forcing frequencies to activate the inherent resonant frequencies of these micro- and nanostructures. In order to extract qualitative information, this paper first analytically investigates the mechanical and electromagnetic (cyclotronic) contributions to the dynamic response for a single particle, and then quantitatively investigates the response of a model problem consisting of a coupled multiparticle periodic array, via numerical simulation, using an implicit temporally-adaptive trapezoidal time-stepping scheme. For the model problem, numerical studies are conducted to observe the cyclotronically-dominated resonant frequency and associated beat phenomena, which arises due to the presence of mechanical and electromagnetic harmonics in the material system.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Maxwell, J. C., 1867, “On the Dynamical Theory of Gases,” Philos. Trans. R. Soc. London157, pp. 49–88. [CrossRef]
Maxwell, J. C., 1873, A Treatise on Electricity and Magnetism, 3rd. ed., Clarendon, Oxford, UK.
Rayleigh, J. W., 1892, “On the Influence of Obstacles Arranged in Rectangular Order Upon Properties of a Medium,” Philos. Mag., 32, pp. 481–491.
Torquato, S., 2002, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York.
Jikov, V. V., Kozlov, S. M., and Olenik, O. A., 1994, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York.
Hashin, Z., 1983, “Analysis of Composite Materials: A Survey,” ASME J. Appl. Mech., 50, pp. 481–505. [CrossRef]
Markov, K. Z., 2000, “Elementary Micromechanics of Heterogeneous Media,” Heterogeneous Media: Micromechanics Modeling Methods and Simulations, K. Z.Markov and L.Preziozi, eds., Birkhauser, Boston, pp. 1162.
Mura, T., 1993, Micromechanics of Defects in Solids, 2nd ed., Kluwer, Dordrecht, Germany.
Nemat-Nasser, S., and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Solids, 2nd ed., Elsevier, Amsterdam.
Huet, C., 1982, “Universal Conditions for Assimilation of a Heterogeneous Material to an Effective Medium,” Mech. Res. Commun., 9(3): 165–170. [CrossRef]
Huet, C., 1984, “On the Definition and Experimental Determination of Effective Constitutive Equations for Heterogeneous Materials,” Mech. Res. Commun., 11(3), pp. 195–200. [CrossRef]
Zohdi, T. I., 2010, “On the Dynamics of Charged Electromagnetic Particulate Jets,” Arch. Comput. Methods Eng., 17(2), pp. 109–135. [CrossRef]
Zohdi, T. I., 2012, Electromagnetic Properties of Multiphase Dielectrics: A Primer on Modeling, Theory and Computation, Springer-Verlag, New York.
Ghosh, S., 2011, Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method, Taylor & Francis, London.
Ghosh, S., and Dimiduk, D., 2011, Computational Methods for Microstructure-Property Relations, Springer New York.
Rebeiz, G. M., Barker, N. S., Muldavin, J. B. and Tan, G. L., 2004, Mechanical Modeling of MEMS Devices: Static Analysis RF MEMS: Theory, Design and Technology, G.M.Rebeiz, ed., Wiley, New York, pp. 21–57.
Quandt, E., and Ludwig, A., 2000, “Magnetorestrictive Actuation in Microsystems,” Sens. Actuators81, pp. 275–280. [CrossRef]
Grimes, C., Ong, K., Loiselle, K., Stoyanov, P., Kouzoudis, D., Liu, Y., Tong, C., and Tefiku, F., 1999, “Magnetoelastic Sensors for Remote Query Environmental Monitoring,” Smart Mater. Struct., 8, pp. 639–646. [CrossRef]
Kouzoudis, D., and Grimes, C., 2000a, “The Frequency Response of Magnetoelastic Sensors to Stress and Atmospheric Pressure,” Smart Mater. Struct., 9, pp. 885–889. [CrossRef]
Kouzoudis, D., and Grimes, C., 2000b, “Remote Query Fluid Flow Velocity Measurement Using Magnetoelastic Thick Film Sensors,” J. Appl. Phys., 87(9), pp. 6301–6303. [CrossRef]
Azevedo, R. G., Jones, D. G., Jog, A. V., Jamshidi, B., Myers, D. R., Chen, L., Fu, X.A., Mehregany, M., Wijesundara, M.B.J. and Pisano, A.P., 2007, “A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications,” IEEE Sens. J., 7(4), pp. 568–576. [CrossRef]
Jones, D. G., Azevedo, R. G., Chan, M. W., Pisano, A. P., and Wijesundara, M. B. J., 2007, “Low Temperature Ion Beam Sputter Deposition of Amorphous Silicon Carbide for Wafer-Level Vacuum Sealing,” Proceedings of the IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Kobe, Japan, January 21–25. [CrossRef]
Myers, D. R., Cheng, K. B., Jamshidi, B., Azevedo, R. G., Senesky, D. G., Chen, L., Mehregany, M., Wijesundara, M. B. J., and Pisano, “A.P.A Silicon Carbide Resonant Tuning Fork for Micro-Sensing Applications in High Temperature and High G-Shock Environments,” J. Micro/Nanolith, MEMS MOEMS, 8(2), p. 021116. [CrossRef]
Yamaguchi, M., Baba, M., Suezawa, K., Moizumi, T., Arai, K. I., Haga, A., Shimada, Y., Tanabe, S., and Itoh, K., 2000, “Improved RF Integrated Magnetic Thin-Film Inductors by Means of Micro Slits and Surface Planarization Techniques,” IEEE Trans. Magn., 36, pp. 3495–3498. [CrossRef]
Yamaguchi, M., Baba, M., and Arai, K. I., 2001, “Sandwich-Type Ferromagnetic RF Integrated Inductor,” IEEE Trans. Microwave Theory Tech., 49, pp. 2331–2335. [CrossRef]
Yamaguchi, M., Bae, S., Kim, K. H., Tan, K., Kusumi, T., and Yamakawa, K., 2005. “Ferromagnetic RF Integrated Inductor With Closed Magnetic Circuit Structure,” IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, June 12–17, pp. 351–354. [CrossRef]
Zhuang, Y., Vroubel, M., Rejaei, B., and Burghartz, J. N., 2002, “Ferromagnetic RF Inductors and Transformers for Standard CMOS/BiCMOS,” International Electron Devices Meeting (IEDM '02), San Francisco, CA, December 8–11, pp. 475–478. [CrossRef]
Zhuang, Y., Vroubel, M., Rejaei, B., Burghartz, J. N., and Attenborough, K., 2005, “Magnetic Properties of Electroplated Nano/Microgranular NiFe Thin Films for RF Application,” J. Appl. Phys., 97, p. 10N305. [CrossRef]
Zhuang, Y., Rejaei, B., Boellaard, E., Vroubel, M., and Burghartz, J. N., 2003, “Solenoid Inductors With Patterned, Sputter-Deposited Cr/Fe10Co90/Cr Ferromagnetic Cores,” IEEE Electron Device Lett., 24, pp. 224–226. [CrossRef]
Kim, G., Cha, S. Y., Hyun, E. K., Jung, Y., Choi, Y., Rieh, J. S., Lee, S. R., and Hwang, S., 2008, “Integrated Planar Spiral Inductors With CoFe and NiFe Ferromagnetic Layer,” Microwave Opt. Technol. Lett., 50, pp. 676–678. [CrossRef]
Gardner, D. S., Schrom, G., Hazucha, P., Paillet, F., Karnik, T., Borkar, S., Saulters, J., Owens, J., and Wetzel, J., 2006, “Integrated On-Chip Inductors With Magnetic Films,” IEEE International Electron Devices Meeting (IEDM '06), San Francisco, CA, December 11–13, pp. 1–4. [CrossRef]
Gardner, D. S., Schrom, G., Hazucha, P., Paillet, F., Karnik, T. and Borkar, S., 2007, “Integrated On-Chip Inductors Design of Magnetic Medium Material and Fully-Closed With Magnetic Films,” IEEE Trans. Magn., 43, pp. 2615–2617. [CrossRef]
Viala, B., Royet, A. S., Cuchet, R., Ad, M., Gaud, P., Valls, O., Ledieu, M., and AcherO., 2004, “RF Planar Ferromagnetic Inductors on Silicon,” IEEE Trans. Magn., 40, pp. 1999–2001. [CrossRef]
Viala, B., Couderc, S., Royet, A.S., Ancey, P., and Bouche, G., 2005, “Bidirectional Ferromagnetic Spiral Inductors Using Single Deposition,” IEEE Trans. Magn., 41, pp. 3544–3549. [CrossRef]
Xu, W., Sinha, S., Pan, F., Dastagir, T., Cao, Y., and Yu, H., 2010, “Improved Frequency Response of On-Chip Inductors With Patterned Magnetic Dots,” IEEE Electron Device Lett., 31, pp. 207–209. [CrossRef]
Jiang, R. F., Shams, N. N., Rahman, M. T., and Lai, C. H., 2007, “Exchange-Coupled IrMn/CoFe Multilayers for RF-Integrated Inductors,” IEEE Trans. Magn., 43, pp. 3930–3932. [CrossRef]
Ikeda, K., Kobayashi, K., Ohta, K., Kondo, R., Suzuki, T., and Fujimoto, M., 2003, “Thin-Film Inductor for Gigahertz Band With CoFeSiO-SiO2 Multilayer Granular Films and Its Application for Power Amplifier Module,” IEEE Trans. Magn., 39, pp. 3057–3061. [CrossRef]
Zhao, J., Zhu, J., Chen, Z., and Liu, Z., 2005, “Radio-Frequency Planar Integrated Inductor With Permalloy Granular Films,” IEEE Trans. Magn., 41, pp. 2334–2338. [CrossRef]
Hsu, M. C., Chao, T. Y., Cheng, Y. Y., Liu, C. M., and Chen, C., 2009, “The Inductance Enhancement Study of Spiral Inductor Using Ni–AAO Nanocomposite Core,” IEEE Trans. Nanotechnol., 8, pp. 281–285. [CrossRef]
Salvia, J., Bain, J. A., and Patrick Yue, C., 2005, “Tunable On-Chip Inductors Up to 5 GHz Using Patterned Permalloy Laminations,” IEEE International Electron Devices Meeting, IEDM Technical Digest, Washington, DC, December 5, pp. 943–946. [CrossRef]
Rousselle, D., Berthault, A., Acher, O., Bouchaud, J. P., and Zrah, P. G., 1993, Effective Medium at Finite Frequency: Theory and Experiment, J. Appl. Phys., 74, pp. 475–479. [CrossRef]
Wallace, L., 1993, “Broadband Magnetic Microwave Absorbers: Fundamental Limitations,” IEEE Trans. Magn., 29, pp. 4209–4214. [CrossRef]
Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, New York.
Zohdi, T. I., 2002, “An Adaptive-Recursive Staggering Strategy for Simulating Multifield Coupled Processes in Microheterogeneous Solids,” Int. J. Numer. Methods Eng., 53, pp. 1511–1532. [CrossRef]
Zohdi, T. I., 2004, “Modeling and Direct Simulation of Near-Field Granular Flows,” Int. J. Solids Struct., 42(2), pp 539–564. [CrossRef]
Zohdi, T. I., 2004, “A Computational Framework for Agglomeration in Thermo-Chemically Reacting Granular Flows,” Proc. Royal Soc., 460(2052), pp. 3421–3445. [CrossRef]
Zohdi, T. I., 2005, “Charge-Induced Clustering in Multifield Particulate Flow,” Int. J. Numer. Methods Eng., 62(7), pp. 870–898. [CrossRef]
Zohdi, T. I., 2007, “Computation of Strongly Coupled Multifield Interaction in Particle-Fluid Systems,” Comput. Meth. Appl. Mech. Eng., 196, pp. 3927–3950. [CrossRef]
Zohdi, T. I., 2007, Introduction to the Modeling and Simulation of Particulate Flows , SIAM, Philadelphia, PA.
Zohdi, T. I. and Wriggers, P., 2008, Introduction to Computational Micromechanics , Springer-Verlag, New York.
Zohdi, T. I., “On the Dynamics of Charged Electromagnetic Particulate Jets,” Arch. Comput. Methods Eng., 17(2), pp. 109–135. [CrossRef]
Zohdi, T. I., 2012, Dynamics of Charged Particulate Systems: Modeling, Theory and Computation, Springer-Verlag, New York.
Frenklach, M., and Carmer, C. S., 1999, “Molecular Dynamics Using Combined Quantum and Empirical Forces: Application to Surface Reactions,” Molecular Dynamics of Clusters, Surfaces, Liquids, and Interfaces (Advances in Classical Trajectory Methods), Vol. IV, W. L.Hase, ed., JAI Press, Stamford, CT, pp. 27–63.
Haile, J. M., 1992, Molecular Dynamics Simulations: Elementary Methods, Wiley, New York.
Hase, W. L., ed., 1999, Molecular Dynamics of Clusters, Surfaces, Liquids, & Interfaces (Advances in Classical Trajectory Methods), Vol. 4, JAI Press, Greenwich, CT.
Rapaport, D. C., 1995, The Art of Molecular Dynamics Simulation, Cambr idge University, Cambridge, UK.
Torquato, S., 2009, “Inverse Optimization Techniques for Targeted Self-Assembly,” Soft Matter5, pp. 1157–1173. [CrossRef]
Rechtsman, M., Stillinger, F. H., and Torquato, S., 2006, “Designed Interaction Potentials Via Inverse Methods for Self-Assembly,” Phys. Rev. E73, p. 011406. [CrossRef]
Rechtsman, M., Stillinger, F. H., and Torquato, S., 2005, “Optimized Interactions for Targeted Self-Assembly: Application to Honeycomb Lattice,” Phys. Rev. Lett., 95, p. 228301. [CrossRef] [PubMed]
Moelwyn-Hughes, E. A., 1961, Physical Chemistry, Pergamon, New York.
Stillinger, F. H., and Weber, T. A., 1985, “Computer Simulation of Local Order in Condensed Phases of Silicon,” Phys. Rev. B, 31, pp. 5262–5271. [CrossRef]
Tersoff, J., 1988, “Empirical Interatomic Potential for Carbon, With Applications to Amorphous Carbon,” Phys. Rev. Lett., 61, pp. 2879–2882. [CrossRef] [PubMed]
Zohdi, T. I., 2010, “Simulation of Coupled Microscale Multiphysical-Fields in Particulate-Doped Dielectrics With Staggered Adaptive FDTD,” Comput. Methods Appl. Mech. Eng., 199, pp. 79–101. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A base, electromagnetically-neutral, solid that is doped with electromagnetically-sensitive particulates

Grahic Jump Location
Fig. 2

The model problem for the numerical simulation. It is a periodic array of 7×7×7 charged particles embedded in a binding medium, due to external oscillatory loading. As for the isolated, single particle example, for each particle, vi(t = 0) = 0, Bext = B3exte3 and Eext=E1exte1, where E1ext=E0extsinΩt.

Grahic Jump Location
Fig. 3

Various responses of the CG of the sample to the values of the forcing frequency, left to right and top to bottom: (a) Ω = 0.1ω, (b) Ω = 0.2ω, (c) Ω = 0.4ω, (d) Ω = 0.8ω, (e) Ω = 1.0ω (very near to resonance), (f) Ω = 1.2ω, (g) Ω = 1.4ω and (h) Ω = 1.8ω. Note that as for the isolated, single particle example, for each particle, vi(t = 0) = 0, Bext = B3exte3 and Eext = E1exte1, where E1ext = E0extsinΩt.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In