Argyris, J. M., and Kelsey, S., 1960, *Energy Theorems and Structural Analysis*, Butterworths, London.

Bruhn, E. F., 1973, *Analysis and Design of Flight Vehicle Structures*, Tri-State Offset Company, Cincinnati, OH.

Vecchio, F. J., and Collins, M. P., 1986, “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI J., 83(2), pp. 219–231.

Schade, H.A., 1940, “The Orthogonally Stiffened Plate Under Uniform Lateral Load,” ASME J. Appl. Mech., 62, pp. 143–146.

Kendrick, S., 1956, “The Analysis of a Flat Plated Grillage,” Eur. Shipbuilding, 5, pp. 4–10.

Lin, Y. K., 1960, “Free Vibration of Continuous Skin-Stringer Panels,” J. Appl. Mech., 27, pp. 669–676.

[CrossRef]Xu, H., Du, J., and Li, W. L., 2010, “Vibrations of Rectangular Plates Reinforced by Any Number of Beams of Arbitrary Lengths and Placement Angles,” J. Sound Vibration, 329, pp. 3759–3779.

[CrossRef]Turvey, G., 1971, “A Contribution to the Elastic Stability of Thin Walled Structures Fabricated From Isotropic and Orthotropic Materials,” Ph.D. dissertation, Univerity of Birmingham, Birmingham, AL.

Cheung, Y. K., and Delcourt, C., 1977, “Buckling and Vibration of Thin Flat-Walled Structures Continuous Over Several Spans, Proc. Inst. Civil Eng., Part II, 63(2), pp. 93–103.

[CrossRef]Liew, K. M., Xiang, Y., Kitipornchai, S., and Meek, J. L., 1995, “Formulation of Mindlin-Engesser Model for Stiffened Plate Vibration,” Comput. Methods Appl. Mech. Eng., 120, pp. 339–353.

[CrossRef]Dozio, L., and Ricciardi, M., 2009, “Free Vibration Analysis of Ribbed Plates by a Combined Analytical-Numerical Method,” J. Sound Vibration, 319, pp. 681–697.

[CrossRef]Bhimaraddi, A., Carr, A. J., and Moss, P. J., 1989, “Finite Element Analysis of Laminated Shells of Revolution With Laminated Stiffeners, Comput. Struct., 33, pp. 295–305.

[CrossRef]Venkatesh, A., and Rao, K. P., 1985, “Analysis of Laminated Shells of Revolution With Laminated Stiffeners Using a Doubly Curved Quadrilateral Finite Element,” Comput. Struct., 20, pp. 669–682.

[CrossRef]Bouabdallah, M. S., and Batoz, J. L., 1996, “Formulation and Evaluation of a Finite Element Model for the Linear Analysis of Stiffened Composite Cylindrical Panels,” Finite Elements in Analysis and Design, 21, pp. 669–682.

[CrossRef]Mustafa, B. A. J., and Ali, R., 1987, “Prediction of Natural Frequency of Vibration of Stiffened Cylindrical Shells and Orthogonally Stiffened Curved Panels,” J. Sound Vibration, 43, pp. 317–327.

[CrossRef]Amabili, M., 2008, *Nonlinear Vibrations and Stability of Shells and Plates*, Cambridge University Press, New York.

Euler, L., 1744, *Theory of Elasticity*, Bousquet, Lausanne/Geneva, Switzerland.

Timoshenko, S. P., and Goodier, J. N., 1970, *Theory of Elasticity*, McGraw-Hill, New York.

Timoshenko, S. P., 1921, “On the Correction for Shear of the Differential Equation for Transverse Vibration of Prismatic Bars,” Philos. Mag., 41, pp. 744–746.

[CrossRef]Stephen, N. G., 1980, “Timoshenko's Shear Coefficient From a Beam Subjected to Gravity Loading, ASME J. Appl. Mech., 47, pp. 121–127.

[CrossRef]Hutchinson, J. R., 2001, “Shear Coefficients for Timoshenko Beam Theory, ASME J. Appl. Mech., 68, pp. 87–92.

[CrossRef]Jensen, J. J., 1983, “On the Shear Coefficients in Thimoshenko's Beam Theory,” J. Sound Vibration, 87, pp. 621–635.

[CrossRef]Schardt, R., 1966, “Eine Erweiterung Der Technischen Biegetheorie Zur Berechnung Prismatischer Faltwerke,” Der Stahlbau, 35, pp. 161–171.

Schardt, R., 1994, “Generalized Beam Theory—An Adequate Method for Coupled Stability Problems,” Thin-Walled Structures, 19, pp. 161–180.

[CrossRef]Schardt, R., and Heinz, D., 1991, “Vibrations of Thin-Walled Prismatic Structures Under Simultaneous Static Load Using Generalized Beam Theory,” *Structural Dynamics*, O. T. Bruhns, H. L. Jessberger, A. N. Kounadis, W. B. Kraetzig, K. Meskouris, H.-J. Niemann, G. Schmidt, G. I. Schueller, and F. Stangenberger, eds., A A Balkema Publishers, Rotterdam, The Netherlands, pp. 961–927.

Bebiano, R., Silvestre, N., and Camotim, D., 2008, “Local and Global Vibration of Thin-Walled Members Subjected to Compression and Non-Uniform Bending,” J. Sound Vibration, 315, pp. 509–535.

[CrossRef]Berdichevsky, V. L., and Starosel'skii, L. A., 1983, “On the Theory of Curvilinear Timoshenko-Type Rods, J. Appl. Math. Mech., 47(6), pp. 809–817.

[CrossRef]Volovoi, V. V., and Hodges, D. H., 2000, “Theory of Anisotropic Thin-Walled Beams,” ASME J. Appl. Mech., 67, pp. 453–459.

[CrossRef]Yu, W., Volovoi, V. V., Hodges, D. H., and Hong, X., 2002, “Validation of the Variational Asymptotic Beam Sectional Analysis (VABS), AIAA J., 40, pp. 2105–2113.

[CrossRef]El Fatmi, R., 2007, “Non-Uniform Warping Including the Effects of Torsion and Shear Forces. Part I. A General Beam Theory,” Int. J. Solids Struct., 44(18-19), pp. 5912–5929.

[CrossRef]El Fatmi, R., 2007, “Non-Uniform Warping Including the Effects of Torsion and Shear Forces. Part II. Analytical and Numerical Applications,” Int. J. Solids Struct., 44(18-19), pp. 5930–5952.

[CrossRef]Wittrick, W. H., and Williams, F. W., 1971, “A General Algorithm for Computing Natural Frequencies of Elastic Structures, Q. J. Mech. Appl. Math., 24, pp. 263–284.

[CrossRef]Carrera, E., 2002, “Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells,” Arch. Comput. Methods Eng., 9(2), pp. 87–140.

[CrossRef]Carrera, E., 2003, “Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessment and Benchmarking,” Arch. Comput. Methods Eng., 10(3), pp. 216–296.

[CrossRef]Carrera, E., and Brischetto, S., 2008, “Analysis of Thickness Locking In Classical, Refined And Mixed Multilayered Plate Theories,” Compos. Struct., 82(4), pp. 549–562.

[CrossRef]Carrera, E., Brischetto, S., and Robaldo, A., 2008, “Variable Kinematic Model For The Analysis Of Functionally Graded Material Plates,” AIAA J., 46, pp. 194–203.

[CrossRef]Carrera, E., Giunta, G., Nali, P., and Petrolo, M., 2010, “Refined Beam Elements With Arbitrary Cross-Section Geometries,” Comput. Struct., 88(5-6), pp. 283–293.

[CrossRef]Carrera, E., Petrolo, M., and Zappino, E., 2012, “Performance of CUFApproach to Analyze the Structural Behavior Of Slender Bodies.” J. Struct. Eng., 138(2), pp. 285–297.

[CrossRef]Carrera, E., Petrolo, M., and Nali, P.2010, “Unified Formulation Applied To Free Vibrations Finite Element Analysis of Beams With Arbitrary Section,” Shock and Vibrations, 17, pp. 1–18.

[CrossRef]Carrera, E., Petrolo, M., and Varello, A., 2012, “Advanced Beam Formulations for Free Vibration Analysis of Conventional and Joined Wings,” J. Aerospace Engin., 25(2), pp. 282–293.

[CrossRef]
Carrera, E., Zappino, E., and Petrolo, M., 2012, “Analysis of Thin-Walled Structures With Longitudinal And Transversal Stiffeners,” ASME J. Appl. Mech. (in press).

[CrossRef]Washizu, K., 1975, *Variational Methods in Elasticity and Plasticity*, Pergamon, Oxford.

Carrera, E., and Giunta, G., 2010, “Refined Beam Theories Based On A Unified Formulation,” Int. J. Appl. Mech., 2(1), pp. 117–143.

[CrossRef]Carrera, E., Petrolo, M., and Nali, P., 2011, “Unified Formulation Applied To Free Vibrations Finite Element Analysis Of Beams With Arbitrary Section,” Shock and Vibrations, 18(3), pp. 485–502.

[CrossRef]Carrera, E., and Petrolo, M., 2011, “On the Effectiveness of Higher-Order Terms In Refined Beam Theories,” J. Appl. Mech., 78(3).

[CrossRef]Carrera, E., and Giunta, G., 2010, “Refined Beam Theories Based on a Unified Formulation,” Int. J. Appl. Mech., 2, pp. 117–143.

[CrossRef]Bathe, K. J., 1996, *Finite Element Procedure*, Prentice-Hall, NY.

Tsai, S. W., 1988, *Composites Design, 4th ed.*, Think Composites, Dayton.

Reddy, J. N., 2004, *Mechanics of Laminated Composite Plates and Shells. Theory and Analysis*, 2nd ed., CRC Press, Boca Raton.