RESEARCH PAPERS: Vibration and Sound

The Dynamic Response to Impact Loading of a Fluid-Supported Rectangular Plate

[+] Author and Article Information
E. Sondak, M. Perl, D. Pnueli

Department of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

J. Vib., Acoust., Stress, and Reliab 111(4), 423-429 (Oct 01, 1989) (7 pages) doi:10.1115/1.3269878 History: Received January 01, 1988; Online November 23, 2009


This work considers the elastodynamic response of a rectangular plate supported by a fluid on one side, and subjected to impact loading on the other side. The presence of the fluid in our problem has the effect, first, of lowering the natural frequency of the plate due to the increased inertia, and secondly, of damping its vibrations owing to the energy carried off in the form of sound waves. The deflection of the plate is approximated by a double infinite series in the spatial coordinates. Each term of the series consists of a product of two modes of deflection of beams, having the same boundary conditions as the plate, multiplied by a time dependent function. The problem is solved for various combinations of fluids, impact loadings, geometrical configurations, and boundary conditions. Excellent agreement is obtained between the present results for eigen frequencies and the static deflections in vacuo and published results. Furthermore, good agreement is obtained for the added-mass and the damping magnitude. As for the dynamic case, since no complete solutions are available, the present results are at least shown to be self-consistent.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In