0
RESEARCH PAPERS: Vibration and Sound

Numerical and Analytical Study of Fluid Dynamic Forces in Seals and Bearings

[+] Author and Article Information
L. T. Tam, A. J. Przekwas

Cham of North America, Inc., Huntsville, AL 35816

A. Muszynska

Bently Rotor Dynamics Research Corporation, Minden, NV 89423

R. C. Hendricks

NASA Lewis Research Center, Cleveland, OH 44135

M. J. Braun

University of Akron, Akron, OH 44325

R. L. Mullen

Case Western Reserve University, Cleveland, OH 44106

J. Vib., Acoust., Stress, and Reliab 110(3), 315-325 (Jul 01, 1988) (11 pages) doi:10.1115/1.3269519 History: Received January 30, 1988; Online November 23, 2009

Abstract

A numerical model based on a transformed, conservative form of the three-dimensional Navier-Stokes equations and an analytical model based on “lumped” fluid parameters are presented and compared with studies of modeled rotor/bearing/seal systems. The rotor destabilizing factors are related to the rotative character of the flow field. It is shown that these destabilizing factors can be reduced through a descrease in the fluid average circumferential velocity. However, the rotative character of the flow field is a complex three-dimensional system with bifurcated secondary flow patterns that significantly alter the fluid circumferential velocity. By transforming the Navier-Stokes equations to those for a rotating observer and using the numerical code PHOENICS-84 with a nonorthogonal body fitted grid, several numerical experiments were carried out to demonstrate the character of this complex flow field. In general, fluid injection and/or preswirl of the flow field opposing the shaft rotation significantly intensified these secondary recirculation zones and thus reduced the average circumferential velocity, while injection or preswirl in the direction of rotation significantly weakened these zones. A decrease in average circumferential velocity was related to an increase in the strength of the recirculation zones and thereby promoted stability. The influence of the axial flow was analyzed. The lumped model of fluid dynamic force based on the average circumferential velocity ratio (as opposed to the bearing/seal coefficient model) well described the obtained results for relatively large but limited ranges of parameters. This lumped model is extremely useful in rotor/bearing/seal system dynamic analysis and should be widely recommended. Fluid dynamic forces and leakage rates were calculated and compared with seal data where the working fluid was bromotrifluoromethane (CBrF3 ). The radial and tangential force predictions were in reasonable agreement with selected experimental data. Nonsynchronous perturbation provided meaningful information for system lumped parameter identification from numerical experiment data.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In