0
RESEARCH PAPERS: Noise Control and Acoustics

Structural Excitation by a Turbulent Boundary Layer: An Overview

[+] Author and Article Information
P. Leehey

Departments of Mechanical and Ocean Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139

J. Vib., Acoust., Stress, and Reliab 110(2), 220-225 (Apr 01, 1988) (6 pages) doi:10.1115/1.3269502 History: Received September 15, 1987; Online November 23, 2009

Abstract

Thirty years of theoretical and experimental research have yet to resolve a number of questions regarding the vibratory response of, and acoustic radiation from, a structure excited by a turbulent boundary layer (TBL). The most important questions are: (a) Can the TBL be characterized as a Thevenin source—particularly when vibratory power flow into the structure is maximized at hydrodynamic coincidence? Alternatively, at what level does structural vibration fundamentally change the character of the TBL? (b) Is the low wave number portion of the wall pressure spectrum of dominant importance in structural excitation away from hydrodynamic coincidence? Or do structural discontinuities cause the convective ridge of wall pressure to be of greater practical interest? (c) Can one quantify the radiation from a turbulent boundary layer about a rigid finite body? Is it dipole or quadrupole? What is the role of fluctuating wall shear stress? Current research on dense fluid loading and on modeling the behavior of the TBL is yielding new, and sometimes surprising, answers to some of these questions. Free resonant structural vibration in the dense fluid limit and the use of a bounded, non-causal, Green function representing the TBL are two of the surprises discussed.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In