RESEARCH PAPERS: Vibration and Sound

The Dynamics of an Impact Print Hammer

[+] Author and Article Information
P. C. Tung, S. W. Shaw

Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

J. Vib., Acoust., Stress, and Reliab 110(2), 193-200 (Apr 01, 1988) (8 pages) doi:10.1115/1.3269498 History: Received September 15, 1987; Online November 23, 2009


A mathematical model is developed to describe the characteristic behavior of an impact print hammer of the stored energy type. The armature of the impact print hammer is represented by a rigid mass held against a backstop by a preloaded linear spring with negative stiffness which characterizes the net effect of a permanent magnet and a prestressed flexible beam acting on the armature. Periodic sine pulses are adopted to represent currents which release the armature to strike the ribbon and paper which is represented by a linear spring and a linear viscous dashpot. A coefficient of restitution is employed to characterize the instantaneous behavior of impact and rebound at the backstop. In this paper, periodic motions with n impacts against the backstop per forcing cycle, period doubling bifurcations, and chaotic motions are found. The stability of the periodic motions is investigated as is the influence of various parameters on the performance of the impact print hammer. With this simple model we can predict much of the qualitative behavior of the actual physical system.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In