0
RESEARCH PAPERS

Finite Element Modeling of Annular-Like Acoustic Cavities

[+] Author and Article Information
Chaw-Hua Kung, Rajendra Singh

Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210

J. Vib., Acoust., Stress, and Reliab 107(1), 81-85 (Jan 01, 1985) (5 pages) doi:10.1115/1.3274720 History: Received August 07, 1984; Online December 08, 2009

Abstract

A finite element technique has been developed to find natural frequencies and modes of undamped three-dimensional acoustic cavities. This method utilizes the analogy between a special form of the discretized transient heat conduction equations and discretized equations of acoustic pressure oscillation. The proposed technique is verified by applying it to several cavities of known theoretical eigen-solutions. Computed results for an acoustic ring, an acoustic disk, and a pure annular cavity match extremely well with exact solutions. In addition, the condensation scheme is investigated and guidelines of selecting acoustic master nodes appropriately are also discussed in the paper. Using the validated finite element method along with suitable condensation, the eigenvalue problem of an annular-like cavity is solved. Since the exact solution for this case is not possible, finite element computations for natural frequencies and modes are compared with the measured results obtained using an acoustic modal analysis experimental technique; again very good agreement has been found.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In