Chang, S., 1995, “The Method of Space-Time Conservation Element and Solution Element–—A New Approach for Solving the Navier-Stokes and Euler Equations,” J. Comput. Phys., 119 (2), pp. 295–324.

[CrossRef]Chang, S., and Wang, X., 2003, “Multi-Dimensional Courant Number Insensitive CE/SE Euler Solvers for Applications Involving Highly Nonuniform Meshes,” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit , Huntsville, AL.

Wang, X. Y., and Chang, S. C., 1999, “A 2D Non-Splitting Unstructured Triangular Mesh Euler Solver Based on the Space-Time Conservation Element and Solution Element Method,” Comput. Fluid Dyn. J., 8 (2), pp. 309–325.

Zhang, Z., Yu, S. T. J., and Chang, S., 2002, “A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes,” J. Comput. Phys., 175 (1), pp. 168–199.

[CrossRef]Loh, C., Hultgren, L., and Chang, S., 2001, “Wave Computation in Compressible Flow Using Space-Time Conservation Element and Solution Element Method,” AIAA J., 39 (5), pp. 794–801.

[CrossRef]Qin, J. R., Yu, S. J., and Lai, M., 2001, “Direct Calculations of Cavitating Flows in Fuel Delivery Pipe by the Space-Time CESE Method,” Journal of Fuels and Lubricants, SAE Transaction, 108 , pp. 1720–1725.

Kim, C., Yu, S. J., and Zhang, Z., 2004, “Cavity Flow in Scramjet Engine by Space-Time Conservation and Solution Element Method,” AIAA J., 42 (5), pp. 912–919.

[CrossRef]Wang, B., He, H., and Yu, S. J., 2005, “Direct Calculation of Wave Implosion for Detonation Initiation,” AIAA J., 43 (10), pp. 2157–2169.

[CrossRef]Zhang, M., Yu, S. J., Lin, S., Chang, S., and Blankson, I., 2004, “Solving Magnetohydrodynamic Equations Without Special Treatment for Divergence-Free Magnetic Field,” AIAA J., 42 (12), pp. 2605–2608.

[CrossRef]Zhang, M., Yu, S. J., Lin, S. H., Chang, S., and Blankson, I., 2006, “Solving the MHD Equations by the Space-Time Conservation Element and Solution Element Method,” J. Comput. Phys., 214 (2), pp. 599–617.

[CrossRef]Wang, X., Chen, C., and Liu, Y., 2002, “The Space-Time CE/SE Method for Solving Maxwell’s Equations in Time-Domain,” "*Antennas and Propagation Society International Symposium*", IEEE, New York, Vol. 1 , pp. 164–167.

Cai, M., Yu, S. J., and Zhang, M., 2006, “Theoretical and Numerical Solutions of Linear and Nonlinear Elastic Waves in a Thin Rod,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit , Sacramento, CA, AIAA Paper No. 2006-4778.

Yu, S. J., Yang, L., Lowe, R. L., and Bechtel, S. E., 2010, “Numerical Simulation of Linear and Nonlinear Waves in Hypoelastic Solids by the CESE Method,” Wave Motion, 47 (3), pp. 168–182.

[CrossRef]Yang, L., Lowe, R. L., Yu, S. J. Y., and Bechtel, S. E., “Numerical Solution by the CESE Method of a First-Order Hyperbolic Form of the Equations of Dynamic Nonlinear Elasticity,” ASME J. Vibr. Acoust., in press.

Ru, Y., Wang, G. F., and Wang, T. J., 2009, “Diffractions of Elastic Waves and Stress Concentration Near a Cylindrical Nano-Inclusion Incorporating Surface Effect,” ASME J. Vibr. Acoust., 131 (6), p. 061011.

[CrossRef]Liu, Z., and Cai, L., 2009, “Three-Dimensional Multiple Scattering of Elastic Waves by Spherical Inclusions,” ASME J. Vibr. Acoust., 131 (6), pp. 061005.

[CrossRef]Auld, B. A., 1990, "*Acoustic Fields and Waves in Solids*", 2nd ed., R.E. Krieger, Malabar, FL.

Arfken, G., 2005, "*Mathematical Methods for Physicists*", 6th ed., Elsevier, Boston.

Meyer, C. D., 2000, "*Matrix Analysis and Applied Linear Algebra*", Society for Industrial and Applied Mathematics, Philadelphia.

Chang, S., and To, W., 1991, “A New Numerical Framework for Solving Conservation Laws: The Method of Space-Time Conservation Element and Solution Element,” NASA Technical Report Nos. E-6403, NAS 1.15:104495, and NASA-TM-104495.

Chang, S., 1992, “On an Origin of Numerical Diffusion: Violation of Invariance Under Space-Time Inversion,” NASA Report Nos. E-7066, NAS 1.15:105776, and NASA-TM-105776.

Chang, S., 2006, “On Space-Time Inversion Invariance and Its Relation to Non-Dissipatedness of a CESE Core Scheme,” Sacramento, CA, p. 35.

Musgrave, M. J. P., 1954, “On the Propagation of Elastic Waves in Aeolotropic Media. II. Media of Hexagonal Symmetry,” Proc. R. Soc. London, Ser. A, 226 (1166), pp. 356–366.

[CrossRef]Karypis, G., and Kumar, V., 1998, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” SIAM J. Sci. Comput. (USA), 20 (1), pp. 359–392.

[CrossRef]Datta, S. K., and Shah, A. H., 2009, "*Elastic Waves in Composite Media and Structures: With Applications to Ultrasonic Nondestructive Evaluation*", CRC, Boca Raton, FL.