Steady-state periodical response is investigated for planar vibration of axially moving viscoelastic beams subjected external transverse loads. A model of the coupled planar vibration is established by introducing a coordinate transform. The model can reduce to two nonlinear models of transverse vibration. The finite difference scheme is developed to calculate steady-state response numerically. Numerical results demonstrate there are steady-state periodic responses in transverse vibration, and resonance occurs if the external load frequency approaches the linear natural frequencies. The effect of material parameters and excitation parameters on the amplitude of the steady-state responses are examined. Numerical results also indicate that the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters, and the two models of transverse vibration yield satisfactory results.