Ibrahim, R. A., 1994, “Friction-Induced Vibration, Chatter, Squeal, and Chaos: Part II—Dynamics and Modeling,” Appl. Mech. Rev., 47 (7), pp. 227–255.

Griffin, J. H., 1980, “Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils,” ASME J. Eng. Power, 102 , pp. 329–333.

Wang, J.-H., 1996, “Design of a Friction Damper to Control Vibration of Turbine Blades,” A.PfeifferF.Guran and K.Popp, eds., "*Dynamics and Friction: Modeling, Analysis, and Experiment*", World Scientific, Singapore.

Wang, Y., 1996, “An Analytical Solution for Periodic Response of Elastic-Friction Damped Systems,” J. Sound Vib.

[CrossRef], 189 (3), pp. 299–313 (1996).

GuillenJ., and Pierre, Ch., 1996, “Analysis of the Forced Response of Dry-Friction Damped Structural Systems Using an Efficient Hybrid Frequency-Time Method,” "*Nonlinear Dynamics and Controls*", A.K.Bajaj, N.S.Namachchivya, and M.A.Franchek, eds., ASME DE-Vol. 91 , pp. 41–50, presented at the 1966 ASME International Mechanical Engineering Congress and Exposition, Atlanta, Nov. 17–22.

Sanliturk, K. Y., and Ewins, D. J., 1996, “Modeling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method,” J. Sound Vib.

[CrossRef], 193 (2), pp. 511–524.

Ferri, A. A., and Heck, B. S., 1998, “Vibration Analysis of Dry Damped Turbine Blades Using Singular Perturbation Theory,” ASME J. Vibr. Acoust.

[CrossRef], 120 (2), pp. 588–595.

Mook, D. T., 2002 private communication.

Filippi, S., Akay, A., May, A., and Gola, M. M., 2004, “Measurement of Tangential Contact Hysteresis During Microslip,” Trans. ASME, J. Tribol.

[CrossRef], 126 (3), pp. 482–489.

Ibrahim, R. A., Madhavan, S., Qiao, S. L., and Chang, W. K., 2000, “Experimental Investigation of Friction-Induced Noise in Disc Brake Systems,” Int. J. Veh. Des., 23 (3–4), pp. 218–240.

Osetreich, M., Hinrichs, N., and Popp, K., 1998, “On the Modeling of Friction Oscillator,” J. Sound Vib.

[CrossRef], 216 (3), pp. 435–459.

Polycarpou, A., and Soom, A., 1992, “Transitions Between Sticking and Slipping at Lubricated Line Contacts,” R.A.Ibrahim and A.Soom, eds., "*Friction-Induced Vibration, Chatter, Squeal, and Chaos, ASME Winter Annual Meeting*", Anaheim, CA, Nov. 8–13, Vol. 49 , pp. 139–148.

Liang, J.-W., and Feeny, B. F., 1998, “A Comparison Between Direct and Indirect Friction Measurements in a Forced Oscillator,” ASME J. Appl. Mech.

[CrossRef], 65 (3), pp. 783–786.

Beck, J., and Arnold, K., 1977, "*Parameter Identification in Engineering and Science*", Wiley and Sons, New York.

Helmholtz, H. L. F., 1877, "*On the Sensations of Tone as Physiological Basis for the Theory of Music*", Dover, New York.

Lord, Rayleigh, 1896, "*The Theory of Sound*", Vol. 1 , Dover, New York, reprinted in 1945.

Lorenz, H., 1924, "*Lehrbuch der Technischen Physik. Erster Band: Technische Mechanik Starrer Gebilde*", Verlag von Julius Springer, Berlin.

Watari, A., 1969, "*Kikai-rikigaku*", Kyoritsu Shuppan, Tokyo.

Feeny, B. F., and Liang, J. W., 1996, “A Decrement Method for the Simultaneous Estimation of Coulomb and Viscous Friction,” J. Sound Vib.

[CrossRef], 195 (1), pp. 149–154.

Liang, J.-W., and Feeny, B. F., 1998, “Identifying Coulomb and Viscous Friction From Free-Vibration Decrements,” Nonlinear Dyn.

[CrossRef], 16 , pp. 337–347.

Förster, F., 1937, “Ein neues Messverfahren zur Bestimmung des Elazitätsmodules und der Dämpfung,” Z. Metallkd., 29 , pp. 109–115.

Ewins, D. J., 1984, "*Modal Testing: Theory and Practice*", Research Studies, Letchworth, UK.

Cusumano, J. P., and Kimble, B., 1994, Experimental Observation of Basins of Attraction and Homoclinic Bifurcation in a Magneto-Mechanical Oscillator, "*Nonlinearity and Chaos in Engineering Dynamics*", John Wiley and Sons, Chichester, pp. 71–89.

Nichols, J. M., Virgin, L. N., and Gavin, H. P., 2001, “Damping Estimates from Experimental Nonlinear Time Series,” J. Sound Vib.

[CrossRef], 246 (5), pp. 815–827.

Stanway, R., Sproston, J. L., and Stevens, N. G., 1985, “A Note on Parameter Estimation in Nonlinear Vibrating Systems,” Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci., 199 (1), pp. 79–84.

Yao, G. Z., Meng, G., and Fang, T., 1997, “Parameter Estimation and Damping Performance of Electro-Rheological Dampers,” J. Sound Vib.

[CrossRef], 204 (4), pp. 575–584.

Tomlinson, G. R., 1980, “An Analysis of the Distortion Effects of Coulomb Damping on the Vector Plots of Lightly Damped System,” J. Sound Vib.

[CrossRef], 71 (3), pp. 443–451.

Chen, Q., and Tomlinson, G. R., 1996, “Parametric Identification of Systems With Dry Friction and Nonlinear Stiffness Using a Time Series Model,” ASME J. Vibr. Acoust.

[CrossRef], 118 , pp. 252–263.

Duval, L., Iourtchenko, D. V., and Dimentberg, M. F., 2000, “The Damping Identification for certain sdof systems,” "*Proceedings of the SECTAM-XX, Developments in Theoretical and Applied Mechanics*", Callaway Gardens, Pine Mountain, GA, Apr. 16–18, pp. 535–538.

Dimentberg, M. F., 1968, “Determination of Nonlinear Damping Function From Forced Vibration Test of a SDOF system,” Inzh. Zh., Mekh. Tverd. Tela, 2 , pp. 32–34.

Iourtchenko, D. V., and Dimentberg, M. F., 2002, “In-Service Identification of Nonlinear Damping From Measured Random Vibration.” J. Sound Vib.

[CrossRef], 255 (3), pp. 549–554.

Liang, J.-W., and Feeny, B. F., 2004, “Identifying Coulomb and Viscous Damping in Forced Dual-Damped Oscillators,” ASME J. Vibr. Acoust.

[CrossRef], 126 (1), pp. 118–125.

Hajj, M. R., Fung, J., Nayfeh, A. H., and Fahey, S. O., 2000, “Damping Identification Using Perturbation Techniques and Higher-Order Spectra,” Nonlinear Dyn., 23 (2), pp. 189–203.

Liu, H., Liu, B., Yuan, D., and Rao, J., 2007, “Identification for Sucker-Rod Pumping System’s Damping Coefficients Based on Chain Code Method of Pattern Recognition,” ASME J. Vibr. Acoust.

[CrossRef], 129 (4), pp. 434–440.

Delgado, A., and San Andrés, L., 2007, “Identification of Structural Stiffness and Damping Coefficients of a Shoed-Brush Seal,” ASME J. Vibr. Acoust.

[CrossRef], 129 (5), 648–655.

Tomlinson, G. R., and Hibbert, J. H., 1979, “Identification of the Dynamic Characteristics of a Structure With Coulomb Friction,” J. Sound Vib.

[CrossRef], 64 (2), pp. 233–242.

Liang, J.-W., and Feeny, B. F., 2006, “Balancing Energy to Estimate Damping Parameters in Forced Oscillators,” J. Sound Vib., 295 (3–5), pp. 988–998.

Yuan, C. M., and Feeny, B. F., 1998, “Parametric Identification of Chaotic Systems,” J. Vib. Control

[CrossRef], 4 (4), pp. 405–426.

Liang, J.-W., 2007, “Damping Estimation via Energy-Dissipation Method,” J. Sound Vib., 307 (1–2), pp. 949–364.

Liang, Y., 2005, “Parametric Identification of Chaotic/Nonlinear Systems and Reduced Order Models Based on Proper Orthogonal Decomposition,” Ph.D. thesis, Michigan State University, East Lansing.

Feeny, B. F., 2007, “Estimating Damping Parameters in Multi-Degree-of-Freedom Vibration Systems by Balancing Energy,” "*Proceedings of the 2007 ASME International Design Engineering Technical Conferences*", Las Vegas, Sept. 4–7, Paper No. VIB-35340.

Lumley, J. L., 1970"*Stochastic Tools in Turbulence*", Academic, New York.

FitzSimons, P. M., and Rui, C., 1993, “Determining Low Dimensional Models of Distributed Systems,” Advances in Robust and Nonlinear Control Systems, ASME-DSC53:9-15.

Spottswood, M., and Allemang, R. J., 2006, “Identification of Nonlinear Parameters for Reduced Order Models,” J. Sound Vib., 295 (1–2), pp. 226–245.

Spottswood, M., and Allemang, R. J., 2007, “On the Investigation of Some Parameter Identification and Experimental Modal Filtering Issues for Nonlinear Reduced Order Models,” Exp. Mech., 43 (4), pp. 511–521.

Amabili, M., Sarkar, A., and Päidoussis, M. P., 2003, “Reduced-Order Models for Nonlinear Vibrations of Cylindrical Shells via the Proper Orthogonal Decomposition Method,” J. Fluids Struct., 18 (2), pp. 227–250.

Lenaerts, V., Kerschen, G., and Golinval, J. C., 2003, Identification of a Continuous Structure with a Geometrical Non-Linearity. Part II: Proper Orthogonal DecompositionJ. Sound Vib., 262 (4), pp. 907–919.

Lenaerts, V., Kerschen, G., and Golinval, J. C., 2003, “ECL Benchmark: Application of the Proper Orthogonal Decomposition,” Mech. Syst. Signal Process., 17 (1), pp. 237–242.

Epureanu, B. I., Tang, L. S. S., and Paidoussis, M. P., 2004, “Coherent Structures and Their Influence on the Dynamics of Aeroelastic Panels,” Int. J. Non-Linear Mech., 39 (6), pp. 977–991.

Feeny, B., and Kappagantu, R., 1998, “On the Physical Interpretation of Proper Orthogonal Modes in Vibrations,” J. Sound Vib.

[CrossRef], 211 (4), pp. 607–616.

Kerschen, G. and Golinval, J. C., 2002, “Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition,” J. Sound Vib.

[CrossRef], 249 (5), pp. 849–865.

Feeny, B. F., 2002, “On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems,” ASME J. Vibr. Acoust.

[CrossRef], 124 (1), pp. 157–160.

Feeny, B. F. and Liang, Y., 2003, “Interpreting Proper Orthogonal Modes in Randomly Excited Vibration Systems,” J. Sound Vib.

[CrossRef], 265 (5), pp. 953–966.

Feeny, B. F., 2002, “On Proper Orthogonal Coordinates as Indicators of Modal Activity,” J. Sound Vib.

[CrossRef], 255 (5), pp. 805–817.

Iemma, U., Morino, L., and Diez, M., 2006, “Digital Holography and Karhunen–Loève Decomposition for the Modal Analysis of Two-Dimensional Vibrating Structures,” J. Sound Vib.

[CrossRef], 291 , 107–131.

Riaz, M. S., and Feeny, B. F., 2003, “Proper Orthogonal Decomposition of a Beam Sensed With Strain Gages,” ASME J. Vibr. Acoust.

[CrossRef], 125 (1), pp. 129–131.