Bose, R. K., 1967, “Note on Forced Vibration of a Thin Non-Homogeneous Circular Plate With Central Hole,” Indian J. Phys., 41 , pp. 886–890.

Biswas, S. K., 1969, “Note on the Torsional Vibration of a Finite Circular Cylinder of Non-Homogeneous Material by a Particular Type of Twist on One of the Plane Surface,” Indian J. Phys., 43 , pp. 320–323.

Rao, G. V., Rao, B. P., and Raju, I. S., 1974, “Vibration of Inhomogeneous Thin Plates Using a High-Precision Triangular Element,” J. Sound Vib., 34 (3), pp. 444–445.

Tomar, J. S., Gupta, D. C., and Jain, N. C., 1982, “Vibration of Non-Homogeneous Plates of Variable Thickness,” J. Acoust. Soc. Am.

[CrossRef], 72 (3), pp. 851–855.

Tomar, J. S., Gupta, D. C., and Jain, N. C., 1984, “Free Vibration of an Isotropic Non-Homogeneous Infinite Plate of Parabolically Varying Thickness,” Indian J. Pure Appl. Math., 15 (2), pp. 211–220.

Gupta, U. S., Lal, R., and Sharma, S., 2006, “Vibration Analysis of Non-Homogeneous Circular Plate of Non-Linear Thickness Variation by Differential Quadrature Method,” J. Sound Vib., 298 (4–5), pp. 892–906.

Chakraverty, S., Jindal, R., and Agarwal, V. K., 2007, “Vibration of Non-Homogeneous Orthotropic Elliptic and Circular Plates With Variable Thickness,” ASME J. Vibr. Acoust.

[CrossRef], 129 (2), pp. 256–259.

Lal, R., and Sharma, S., 2004, “Axisymmetric Vibrations of Non-Homogeneous Polar Orthotropic Annular Plate of Variable Thickness,” J. Sound Vib.

[CrossRef], 272 (1–2), pp. 245–265.

Lal, R., and Dhanpati, 2007, “Transverse Vibrations of Non-Homogeneous Orthotropic Rectangular Plates of Variable Thickness: A Spline Technique,” J. Sound Vib., 306 (1–2), pp. 203–214.

Hetenyi, M., 1946, "*Beams on Elastic Foundation*", The University of Michigan Press, Ann Arbor, MI.

Selvadurai, A. P. S., 1979, "*Elastic Analysis of Soil-Foundation Interaction*", Elsevier, New York.

Kerr, A. D., 1964, “Elastic and Viscoelastic Foundation Models,” ASME J. Appl. Mech., 31 (3), pp. 491–498.

Hetenyi, M., 1966, “Beams and Plates on Elastic Foundation and Related Problems,” Appl. Mech. Rev., 19 , pp. 95–102.

Gaith, M., and Müftü, S., 2007, “Lateral Vibration of Two Axially Translating Beams Interconnected by a Winkler Foundation,” ASME J. Vibr. Acoust.

[CrossRef], 129 (3), pp. 256–259.

Kobayashi, H., and Sonoda, K., 1989, “Rectangular Mindlin Plates on Elastic Foundation,” Int. J. Mech. Sci., 31 (9), pp. 679–692.

Kennedy, D., and Williams, F. W., 1990, “Vibration and Buckling of Anisotropic Assemblies With Winkler Foundation,” J. Sound Vib., 138 (3), pp. 501–510.

Raju, K. K., and Rao, G. V., 1990, “Effect of Elastic Foundation on the Mode Shapes in Stability and Vibration Problems of Simply Supported Rectangular Plates,” J. Sound Vib., 139 (1), pp. 170–173.

Liew, K. M., Han, J. B., Xiao, Z. M., and Du, H., 1996, “Differential Quadrature Method for Mindlin Plates on Winkler Foundation,” Int. J. Mech. Sci.

[CrossRef], 38 (4), pp. 405–421.

Yingshi, Z., 1999, “Vibration of Stepped Rectangular Thin Plates on Winkler Foundation,” Appl. Math. Mech., 20 (5), pp. 568–578.

Yang, T. Y., 1972, “A Finite Element Analysis of Plates on a Two Parameter Foundation Model,” Comput. Struct.

[CrossRef], 2 (4), pp. 593–614.

Turvey, G. J., 1977, “Uniformly Loaded, Simply Supported, Antisymmetrically Laminated, Rectangular Plate on a Winkler-Pasternak Foundation,” Int. J. Solids Struct.

[CrossRef], 13 (5), pp. 437–444.

Katiskadelis, J. T., and Kallivokas, L. F., 1986, “Clamped Plates on Pasternak-Type Elastic Foundation by the Boundary Element Method,” ASME J. Appl. Mech., 53 (4), pp. 909–917.

Wang, J. G., Wang, X. X., and Haung, M. K., 1992, “Fundamental Solutions and Boundary Integral Equations for Reissner’s Plates on Two Parameter Foundations,” Int. J. Solids Struct., 29 (10), pp. 1233–1239.

Wang, C. W., Wang, C., and Ang, K. K., 1997, “Vibration of Initially Stressed Reddy Plates on a Winkler-Pasternak Foundation,” J. Sound Vib., 204 (2), pp. 203–212.

Omurtag, M. H., and Kadioglu, F., 1998, “Free Vibration Analysis of Orthotropic Plates Resting on Pasternak Foundation by Mixed Finite Element Formulation,” Comput. Struct., 67 (4), pp. 253–265.

Malekzadeh, P., and Karami, G., 2004, “Vibration of Non-Uniform Thick Plates on Elastic Foundation by Differential Quadrature Method,” Eng. Struct., 26 (10), pp. 1473–1482.

Leung, A. V. T., and Zhu, B., 2005, “Transverse Vibration of Mindlin Plates on Two-Parameter Foundation by Analytical Trapezoidal p-Elements,” J. Eng. Mech.

[CrossRef], 131 (11), pp. 1140–1145.

Lekhnitskii, S. G., 1968, "*Anisotropic Plates*", Translated by S. W. Tsai and T. Cheron, Gordon and Breach, New York.

Panc, V., 1975, "*Theories of Elastic Plates*", Noordhoff International, Leydon, The Netherlands.

Lal, R., Gupta, U. S., and Goel, C., 2001, “Chebyshev Polynomials in the Study of Transverse Vibrations of Nonuniform Rectangular Orthotropic Plates,” Shock Vib. Dig., 33 (2), pp. 103–112.

Biancolini, M. E., Brutti, C., and Reccia, L., 2005, “Approximate Solution for Free Vibration of Thin Orthotropic Rectangular Plates,” J. Sound Vib.

[CrossRef], 288 (1–2), pp. 321–344.

Leissa, A. W., 1969, "*Vibration of Plates*", Government Printing Office, Washington, DC, NASA SP-160.

Jain, R. K., and Soni, S. R., 1973, “Free Vibration of Rectangular Plates of Parabolically Varying Thickness,” Indian J. Pure Appl. Math., 4 (3), pp. 267–277.

Gutierrez, R. H., and Laura, P. A. A., 1994, “Vibrations of Rectangular Plates With Linearly Varying Thickness and Non-Uniform Boundary Conditions,” J. Sound Vib., 178 (4), pp. 563–566.