Gosavi, S. V., and Kelkar, A. G., 2004, “Modelling, Identification, and Passivity-Based Robust Control of Piezo-Actuated Flexible Beam,” Trans. ASME, J. Vib. Acoust.

[CrossRef], 126 (2), pp. 260–271.

Cai, G.-P., Hong, J.-Z., and Yang, S. X., 2005, “Dynamic Analysis of a Flexible Hub-Beam System With Tip Mass,” Mech. Res. Commun., 32 (2), pp. 173–190.

Fallahi, B., and Lai, S. H. Y., 1994, “An Improved Numerical Scheme for Characterizing Dynamic Behavior of High-Speed Rotating Elastic Beam Structures,” Comput. Struct., 50 (6), pp. 749–755.

Ouyang, H., and Wang, M., 2007, “Dynamics of a Rotating Shaft Subject to a Three-Directional Moving Load,” Trans. ASME, J. Vib. Acoust.

[CrossRef], 129 (3), pp. 386–389.

Eguchi, T., and Nakamiya, T., 2006, “An Improved Component-Mode Synthesis Method to Predict Vibration of Rotating Spindles and Its Application to Position Errors of Hard Disk Drives,” Trans. ASME, J. Vib. Acoust.

[CrossRef], 128 (5), pp. 568–575.

Schiehlen, W., Guse, N., and Seifried, R., 2006, “Multibody Dynamics in Computational Mechanics and Engineering Applications,” Comput. Methods Appl. Mech. Eng., 195 (41–43), pp. 5509–5522.

Ibrahimbegovic, A., Taylor, R. L., and Lim, H., 2003, “Non-Linear Dynamics of Flexible Multibody Systems,” Comput. Struct., 81 (12), pp. 1113–1132.

Mukherjee, A., and Chaudhuri, A. S., 2005, “Nonlinear Dynamic Response of Piezolaminated Smart Beams,” Comput. Struct., 83 (15–16), pp. 1298–1304.

Zhou, Y.-H., and Wang, J., 2004, “Vibration Control of Piezoelectric Beam-Type Plates With Geometrically Nonlinear Deformation,” Int. J. Non-Linear Mech.

[CrossRef], 39 (6), pp. 909–920.

Shu-Qing, Y., Qing-Yu, X., and Ling, Z., 2000, “Experiments on Active Vibration Control of a Flexible Four-Bar Linkage Mechanism,” Trans. ASME, J. Vib. Acoust.

[CrossRef], 122 (1), pp. 82–85.

Huang, Y. A., Deng, Z. C., and Li, W. C., 2007, “Sliding Mode Control Based on Neural Network for the Vibration Reduction of Flexible Structures,” Struct. Eng. Mech., 26 (4), pp. 377–392.

Huang, Y. A., Deng, Z. C., and Xiong, Y. L., 2007, “Dynamic Analysis of a Rotating Rigid-Flexible Coupled Smart Structure With Large Deformations,” Appl. Math. Mech., 28 (10), pp. 1349–1360.

Chen, S., and Tortorelli, D. A., 2003, “An Energy-Conserving and Filtering Method for Stiff Nonlinear Multibody Dynamics,” Multibody Syst. Dyn., 10 (4), pp. 341–362.

Zhang, S. Y., and Deng, Z. C., 2006, “Group Preserving Schemes for Nonlinear Dynamic System Based on RKMK Methods,” Appl. Math. Comput., 175 (1), pp. 497–507.

Budd, C. J., and Iserles, A., 1999, “Geometric Integration: Numerical Solution of Differential Equations on Manifolds,” Philos. Trans. R. Soc. London, Ser. A, 357 (1754), pp. 945–956.

Gonzalez, O., and Simo, J. C., 1996, “On the Stability of Symplectic and Energy-Momentum Algorithms for Non-Linear Hamiltonian Systems With Symmetry,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 134 (3–4), pp. 197–222.

Feng, K., 1984, “On Difference Schemes and Simplectic Geometry,” "*Proceedings of Symposium on Differential Geometry and Differential Equations*", K.Feng, ed., pp. 42–58.

Feng, K., and Qin, M., 1991, “Hamiltonian Algorithms for Hamiltonian Systems and a Comparative Numerical Study,” Comput. Phys. Commun.

[CrossRef], 65 (1–3), pp. 173–187.

Izaguirrea, J. s. A., Reich, S., and Skeel, R. D., 1999, “Longer Time Steps for Molecular Dynamics,” J. Chem. Phys.

[CrossRef], 110 (20), pp. 9853–9864.

Buss, S. R., 2000, “Accurate and Efficient Simulation of Rigid-Body Rotations,” J. Comput. Phys., 164 (2), pp. 377–406.

Huang, Y. A., and Deng, Z. C., 2007, “Dynamics Analysis of the Hub and Tapered Beam Coupled System With Tip Mass,” Chinese Journal of Computational Mechanics, 24 (1), pp. 14–19, in Chinese. Available at:

http://jslxxb.dlut.edu.cnWasfy, T. M., and Noor, A. K., 2003, “Computational Strategies for Flexible Multibody Systems,” Appl. Mech. Rev.

[CrossRef], 56 (6), pp. 553–613.

Kerdjoudj, M., and Amirouche, F., 1996, “Implementation of the Boundary Element Method in the Dynamics of Flexible Bodies,” Int. J. Numer. Methods Eng.

[CrossRef], 39 (2), pp. 321–354.

Iura, M., and Kanaizuka, J., 2001, “Flexible Translational Joint Analysis by Meshless Method,” Int. J. Solids Struct.

[CrossRef], 37 (37), pp. 5203–5217.

Bathe, K.-J., Wilson, E. L., 1976, "*Numerical Methods in Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Ibrahimbegovic, A., 1995, “On FE Implementation of Geometrically Nonlinear Reissner Beam Theory: Three-Dimensional Curved Beam Finite Elements,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 122 , pp. 10–26.

Huang, Y. A., Deng, Z. C., and Yao, L. X., 2007, “An Improved Symplectic Precise Integration Method for Analysis of the Rotating Rigid-Flexible Coupled System,” J. Sound Vib., 299 (1–2), pp. 229–246.

Ryu, J., and Kim, S.-S., 1997, “A Criterion on Inclusion of Stress Stiffening Effects in Flexible Multibody Dynamic System Simulation,” Comput. Struct.

[CrossRef], 62 (6), pp. 1035–1048.

Wu, S. C., and Haug, E. J., 1988, “Geometric Non-Linear Substructuring for Dynamics of Flexible Mechanical Systems,” Int. J. Numer. Methods Eng.

[CrossRef], 26 (10), pp. 2211–2226.

Tiersten, H. F., 1969, "*Linear Piezoelectric Plate Vibrations*", Plenum, New York.

Zhong, W. X., 2004, “On Precise Integration Method,” J. Comput. Appl. Math.

[CrossRef], 163 (1), pp. 59–78.

Wang, Q., Huang, K., and Lu, Q., 1997, “Symplectic Algorithm for Hamilton Multibody System,” Chin. J. Comput. Phys., 14 (1), pp. 35–39.

Feng, K., and Qin, M., 2003, "*Symplectic Geometric Algorithms for Hamiltonian Systems*", Zhejiang Science and Technology, Zhejiang, Hangzhou.