Frahm, H., 1909, “Device for Damping Vibration Bodies,” U.S. Patent No. 989958.

Brennan, M. J., and Dayou, J., 2000, “Global Control of Vibration Using a Tunable Vibration Neutralizer,” J. Sound Vib.

[CrossRef], 232 , pp. 585–600.

Ormondroyd, J., and Den Hartog, J. P., 1928, “The Theory of the Vibration Absorber,” Trans. ASME, 50 , pp. 9–22.

Den Hartog, J. P., 1956, "*Mechanical Vibrations*", McGraw-Hill, New York.

Jacquot, R. G., 1978, “Optimal Dynamic Absorbers for General Beam Systems,” J. Sound Vib., 60 , pp. 535–542.

Thompson, A. G., 1981, “Optimum Tuning and Damping of a Dynamic Absorber Applied to a Force Excited and Damped Primary System,” J. Sound Vib.

[CrossRef], 77 , pp. 403–415.

Warburton, G. B., 1982, “Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters,” Earthquake Eng. Struct. Dyn.

[CrossRef], 10 , pp. 381–401.

Kitis, L., Wang, B. P., and Pilkey, W. D., 1983, “Vibration Reduction Over a Frequency Range,” J. Sound Vib.

[CrossRef], 89 , pp. 559–569.

Snowdon, J. C., Wolfe, A. A., and Kerlin, R. L., 1984, “The Cruciform Dynamic Vibration Absorber,” J. Acoust. Soc. Am.

[CrossRef], 75 , pp. 1792–1799.

Vakakis, A. F., and Paipetis, S. A., 1986, “The Effect of a Viscously Damped Dynamic Absorber on a Linear Multi-Degree-of-Freedom-System,” J. Sound Vib.

[CrossRef], 105 , pp. 49–60.

Ozer, M. B., and Royston, T. J., 2005, “Extending Den Hartog’s Vibration Absorber Technique to Multi-Degree-of-Freedom Systems,” ASME J. Vibr. Acoust., 127 , pp. 341–350.

Sherman, J., and Morrison, W. J., 1949, “Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix,” Ann. Math. Stat., 20 , p. 621.

Rice, H. J., 1993, “Design of Multiple Vibration Absorber Systems Using Modal Data,” J. Sound Vib.

[CrossRef], 160 , pp. 378–385.

Rade, D. A., and Steffen, V., 2000, “Optimization of Dynamic Vibration Absorbers Over a Frequency Band,” Mech. Syst. Signal Process., 14 , pp. 679–690.

Zuo, L., and Nayfeh, S. A., 2004, “Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers,” J. Sound Vib.

[CrossRef], 272 , pp. 893–908.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, C. D., 1983, “Optimization by Simulated Annealing,” Science

[CrossRef], 220 (4598), pp. 671–680.

Dowell, E. H., 1979, “On Some General Properties of Combined Dynamical Systems,” ASME J. Appl. Mech., 46 , pp. 206–209.

1984, MATLAB , Library reference manual , TheMathworks 12 Inc.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., 1953, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys.

[CrossRef], 21 , pp. 1087–1092.

1988, "*Numerical Recipes in C: The Art of Scientific Computing*", Cambridge University Press, Cambridge.

Allwright, J. R. A., and Carpenter, D. B., 1989, “A Distributed Implementation of Simulated Annealing for the Travelling Salesman Problem,” Parallel Comput., 10 (3), pp. 335–338.

Vecchi, M. P., and Kirkpatrick, S., 1983, “On the Optimal Location of Elementary Systems Using Simulated Annealing,” IEEE Trans. Comput.-Aided Des.

[CrossRef], 2 , pp. 215–222.

Otten, R. H. J. M., and van Ginneken, L. P. P. P., 1989, "*The Annealing Algorithm*", Kluwer, Boston.

Chang, Y., Yeh, L., and Chiu, M., 2005, “Optimization of Constrained Composite Absorbers Using Simulated Annealing,” Appl. Acoust., 66 , pp. 341–352.

Ceranic, B., Fryer, C., and Baines, R. W., 2001, “An Application of Simulated Annealing to the Optimum Design of Reinforced Retaining Structures,” Comput. Struct., 79 , pp. 1569–1581.

Yong, L., Lishan, K., and Evans, D. J., 1995, “The Annealing Evolution Algorithm as a Function Optimizer,” Parallel Comput., 21 , pp. 389–400.

Ewins, D. J., 1984, "*Modal Testing. Theory and Practice*", Willey, New York.

Ozer, M. B., and Royston, T. H., 2005, “Application of Sherman–Morrison Matrix Inversion Formula to Damped Vibration Absorbers Attached to Multi-Degree of Freedom Sytems,” J. Sound Vib., 283 (3–5), pp. 341–350.