Timoshenko, S. P., 1922, “On the Transverse Vibration of Bars With Uniform Cross-Section,” Philos. Mag., 43 , pp. 125–131.

Mindlin, R. D., and Deresiewicz, H., 1954, “Timoshenko’s Shear Coefficient for Flexural Vibrations of Beams,” "*Proc. of 2nd U.S. National Congress of Applied Mechanics*", ASME, New York, pp. 175–178.

Cowper, G. R., 1966, “The Shear Coefficient in Timoshenko’s Beam Theory,” ASME J. Appl. Mech., 33 , pp. 335–340.

Hutchinson, J. R., 2004, “On Timoshenko Beams of Rectangular Cross-Section,” ASME J. Appl. Mech.

[CrossRef], 71 , pp. 359–367.

Murthy, A. V., 1970, “Vibrations of Short Beams,” AIAA J., 8 , pp. 34–38.

Soler, A. I., 1968, “Higher Order Effects in Thick Rectangular Elastic Beams,” Int. J. Solids Struct.

[CrossRef], 4 , pp. 723–739.

Leech, C. M., 1977, “Beam Theories: A Variational Approach,” Int. J. Mech. Eng. Educ., 5 , pp. 81–87.

Stephen, N. G., and Levinson, M., 1979, “A Second Order Beam Theory,” J. Sound Vib.

[CrossRef], 67 , pp. 293–305.

Levinson, M., 1981, “A New Rectangular Beam Theory,” J. Sound Vib.

[CrossRef], 74 , pp. 81–87.

Bickford, W. B., 1982, “A Consistent High-Order Beam Theory,” Dev. Theor. Appl. Mech., 11 , pp. 137–150.

Levinson, M., 1985, “On Bickford’s Consistent Higher Order Beam Theory,” Mech. Res. Commun.

[CrossRef], 12 , pp. 1–9.

Murty, A. V. K., 1985, “On the Shear Deformation Theory for Dynamic Analysis of Beams,” J. Sound Vib.

[CrossRef], 101 , pp. 1–12.

Kant, T., and Gupta, A., 1988, “A Finite Element Model for a Higher Order Shear Deformable Beam Theory,” J. Sound Vib.

[CrossRef], 125 , pp. 193–202.

Bhimaraddi, A., and Chandrashekhara, K., 1993, “Observations on Higher-Order Beam Theory,” J. Aerosp. Eng.

[CrossRef], 6 , pp. 408–413.

Petrolito, J., 1995, “Stiffness Analysis of Beams Using a Higher-Order Theory,” Comput. Struct.

[CrossRef], 55 , pp. 33–39.

Wang, C. M., Reddy, J. N., and Lee, K. H., 2000, "*Shear Deformable Beams and Plates*", Elsevier, New York.

Reddy, J. N., Wang, C. M., Lim, G. T., and Ng, K. H., 2001, “Bending Solutions of the Levinson Beams and Plates in Terms of the Classical Theories,” Int. J. Solids Struct.

[CrossRef], 38 , pp. 4701–4720.

Ghugal, Y. M., and Shimpi, R. P., 2001, “A Review of Refined Shear Deformation Theories for Isotropic and Anisotropic Laminated Beams,” J. Reinf. Plast. Compos.

[CrossRef], 20 , pp. 255–272.

Eisenberger, M., 2003, “An Exact High Order Beam Element,” Comput. Struct.

[CrossRef], 81 , pp. 147–152.

Stein, M., 1989, “Vibration of Beams and Plate Strips With Three-Dimensional Flexibility,” ASME J. Appl. Mech., 56 , pp. 228–231.

Ghugal, Y. M., and Shimpi, R. P., 2000, “A Trigonometric Shear Deformation Theory for Flexure and Free Vibration of Isotropic Thick Beams,” Structural Engineering Convention, SEC-2000, IIT Bombay, India.

Rao, G. V., Saheb, K. M., and Janardhan, G. R., 2006, “Concept of Coupled Displacement Field for Large Amplitude Free Vibrations of Shear Flexible Beams,” ASME J. Vibr. Acoust.

[CrossRef], 128 , pp. 251–255.

Ramezani, A., Alasty, A., and Akbari, J., 2006, “Effects of Rotary Inertia and Shear Deformation on Nonlinear Free Vibration of Microbeams,” ASME J. Vibr. Acoust.

[CrossRef], 128 , pp. 611–615.

Burden, R. L., and Faires, J. D., 1989, "*Numerical Analysis*", PWS-Kent Publishing, Boston.

Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., and Watt, S. M., 1990, *Maple Reference Manual*, Symbolic Computation Group and Waterloo Maple Publishing, Department of Computer Science, University of Waterloo, Canada.

Cowper, G. R., 1968, “On the Accuracy of Timoshenko’s Beam Theory,” J. Engrg. Mech. Div., 94 , pp. 1447–1453.

Senthilnathan, N. R., and Lee, K. H., 1992, “Some Remarks on Timoshenko Beam Theory,” ASME J. Vibr. Acoust., 114 , pp. 495–497.