Özgüven, H. N., and Çandir, B., 1986, “Suppressing the First and Second Resonances of Beams by Dynamic Vibration Absorbers,” J. Sound Vib., 111 , pp. 377–390.

Cha, P. D., and Wong, W. C., 1999, “A Novel Approach to Determine the Frequency Equations of Combined Dynamical Systems,” J. Sound Vib., 219 , pp. 689–706.

Gürgöze, M., 1996, “On the Eigenfrequencies of a Cantilever Beam with Attached Tip Mass and a Spring-Mass System,” J. Sound Vib.

[CrossRef], 190 , pp. 149–162.

Posiadała, B., 1997, “Free Vibrations of Uniform Timoshenko Beams With Attachments,” J. Sound Vib., 204 , pp. 359–369.

Lueschen, G. G. G., Bergman, L. A., and McFarland, D. M., 1996, “Green’s Functions for Uniform Timoshenko Beams,” J. Sound Vib.

[CrossRef], 194 , pp. 93–102.

Kukla, S., 1997, “Application of Green Functions in Frequency Analysis of Timoshenko Beams with Oscillators,” J. Sound Vib., 205 , pp. 355–363.

Chang, T. P., Chang, F. I., and Liu, M. F., 2001, “On the Eigenvalues of a Viscously Damped Simple Beam Carrying Point Masses and Springs,” J. Sound Vib., 240 , pp. 769–778.

Wu, J. S., and Lin, T. L., 1990, “Free Vibration Analysis of a Uniform Cantilever Beam with Point Masses by an Analytical-and-Numerical-Combined Method,” J. Sound Vib.

[CrossRef], 136 , pp. 201–213.

Wu, J. S., and Chou, H. M., 1999, “A new Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying Any Number of Sprung Masses,” J. Sound Vib.

[CrossRef], 220 , pp. 451–468.

Henderson, H. V., and Searle, S. R., 1981, “On Deriving the Inverse of a Sum of Matrices,” SIAM Rev.

[CrossRef], 23 , pp. 53–60.

Hager, W. W., 1989, “Updating the Inverse of a Matrix,” SIAM Rev.

[CrossRef], 31 , pp. 221–239.

Ozer, M. B., and Royston, T. J., 2005, “Application of Sherman-Morrison Matrix Inversion Formula to Damped Vibration Absorbers Attached to Multi-Degree of Freedom Systems,” J. Sound Vib.

[CrossRef], 283 , pp. 1235–1249.

Meirovitch, L., 2001, "*Fundamentals of Vibrations*", McGraw-Hill, New York.

Sherman, J., and Morrison, W. J., 1949, “Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column Or a Given Row of the Original Matrix,” Ann. Math. Stat., 20 , p. 621.

Golub, G. H., and van Loan, C. F., 1996, "*Matrix Computations*", Johns Hopkins University Press, Baltimore.

Gürgöze, M., 1998, “On the Sensitivities of the Eigenvalues of a Viscously Damped Cantilever Carrying a Tip Mass,” J. Sound Vib., 216 , pp. 215–225.

Wang, B. P., Kitis, L., Pilkey, W. D., and Palazzolo, A., 1982, “Structural Modifications to Achieve Antiresonance in Helicopters,” J. Aircr., 19 , pp. 499–504.

Wang, B. P., Kitis, L., Pilkey, W. D., and Palazzolo, A., 1985, “Synthesis of Dynamic Vibration Absorbers,” ASME J. Vib., Acoust., Stress, Reliab. Des., 107 , pp. 161–166.

Cha, P. D., 2004, “Imposing Nodes at Arbitrary Locations for General Elastic Structures During Harmonic Excitations,” J. Sound Vib., 272 , pp. 853–868.

Wang, B. P., 1993, “Eigenvalue Sensitivity With Respect to Location of Internal Stiffness and Mass Attachments,” AIAA J., 31 , pp. 791–794.

Cha, P. D., and Zhou, X., 2006, “Imposing Points of Zero Displacements and Zero Slopes Along Any Linear Structure During Harmonic Excitations,” J. Sound Vib., 297 , pp. 55–71.