Il’yushin, A. A., and Pobedrya, B. E., 1970, "*Fundamentals of the Mathematical Theory of Thermoviscoelasticity*" (in Russian), Nauka, Moscow.

Christensen, R. M., 1971, "*Theory of Viscoelasticity*", Academic Press, New York.

Rabotnov, Yu. N., 1977, "*Elements of the Hereditary Mechanics of Solids*" (in Russian), Nauka, Moscow.

Malmeyster, A. K., Tamuzh, V. P., and Тeters, G. S., 1980, "*Resistance of Composite Materials*" (in Russian), Zinatne, Riga.

Bogdanovich, A. E., 1993, "*Nonlinear Dynamic Problems for Composite Cylindrical Shells*", Elsevier, New York.

Ambartsumyan, S. A., 1970, "*Theory of Anisotropic Plates*", Technomic, Stamford.

Koltunov, M. A., 1976, "*Creep and Relaxation*" (in Russian), Visshaya shkola, Moscow.

Volmir, A. S., 1972, "*The Nonlinear Dynamics of Plates and Shells*" (in Russian), Nauka, Moscow.

Vel, S. S., and Baillargeon, B. P., 2005, “Analysis of Static Deformation, Vibration and Active Damping of Cylindrical Composite Shells With Piezoelectric Shear Actuators,” ASME J. Vibr. Acoust.

[CrossRef], 127 (4), pp. 395–407.

Shiau, L.-C., and Kuo, S.-Y., 2006, “Free Vibration of Thermally Buckled Composite Sandwich Plates,” ASME J. Vibr. Acoust.

[CrossRef], 128 (1), pp. 1–7.

Dimitris, V., and Dimitris, A. S., 2006, “Small-Amplitude Free-Vibration Analysis of Piezoelectric Composite Plates Subject to Large Deflections and Initial Stresses,” ASME J. Vibr. Acoust.

[CrossRef], 128 (1), pp. 41–49.

Chakraborty, A., and Gopalakrishnan, S., 2006, “A Spectral Finite Element Model for Wave Propagation Analysis in Laminated Composite Plate,” ASME J. Vibr. Acoust.

[CrossRef], 128 (4), pp. 477–488.

Donnell, L. H., 1976, "*Beams, Plates, and Shells*", McGraw-Hill, New York.

Timoshenko, S. P., and Woinowsky-Krieger, S., 1987, "*Theory of Plates and Shells*", 2nd ed.McGraw-Hill, New York.

Reissner, E., 1945, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech., 12 , pp. 69–88.

Mindlin, R. D., 1951, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates,” ASME J. Appl. Mech., 19 , pp. 31–38.

Eshmatov, B. Kh., 2004, “Nonlinear Vibrations of Viscoelastic Orthotropic Cylindrical Shells in View of Propagation of Elastic Waves,” Materials of XVII Session of the International School on Models of Mechanics of the Continuous Environment , Kazan, Russia, pp. 186–191.

Eshmatov, B. Kh., 2005, “Nonlinear Vibrations of Viscoelastic Orthotropic Plates From Composite Materials,” 3rd MIT Conference on Computational Fluid and Solid Mechanics , Boston.

Eshmatov, B. Kh., 2006, “Dynamic Stability of Viscoelastic Plates at Growing Compressing Loadings,” J. Appl. Mech. Tech. Phys.

[CrossRef], 47 (2), pp. 289–297.

Eshmatov, B. Kh., 2006, “Nonlinear Vibration Analysis of Viscoelastic Plates Based on a Refined Timoshenko Theory,” Int. Appl. Mech.

[CrossRef], 42 (5), pp. 596–605.

Sahu, S. K., and Datta, P. K., 2003, “Dynamic Stability of Laminated Composite Curved Panels With Cutouts,” J. Eng. Mech.

[CrossRef], 129 (11), pp. 1245–1253.

Kumar, L. R., Datta, P. K., and Prabhakara, D. L., 2003, “Tension Buckling and Dynamic Stability Behavior of Laminated Composite Doubly Curved Panels Subjected to Partial Edge Loading,” Compos. Struct.

[CrossRef], 60 , pp. 171–181.

Singh, A. V., and Kumar, V., 1998, “On Free Vibrations of Fiber Reinforced Doubly Curved Panels, Part 2: Applications,” ASME J. Vibr. Acoust., 120 (1), pp. 295–300.

Shirakawa, K., 1983, “Effects of Shear Deformation and Rotary Inertia on Vibration and Buckling of Cylindrical Shells,” J. Sound Vib.

[CrossRef], 91 (3), pp. 425–437.

Popov, A. A., Thompson, J. M. T., and Croll, J. G. A., 1998, “Bifurcation Analyses in the Parametrically Excited Vibrations of Cylindrical Panels,” Nonlinear Dyn.

[CrossRef], 17 , pp. 205–225.

Hui, D., 1984, “Influence of Geometric Imperfections and In-Plate Constraints of Nonlinear Vibrations of Simply Supported Cylindrical Panels,” ASME J. Appl. Mech., 51 , pp. 383–390.

Raouf, R. A., 1993, “A Qualitative Analysis of the Nonlinear Dynamic Characteristics of Curved Orthotropic Panels,” Composites Eng., 3 , pp. 1101–1110.

Xia, Z. Q., and Lukasiewicz, S., 1995, “Non-Linear Analysis of Damping Properties of Cylindrical Sandwich Panels,” J. Sound Vib.

[CrossRef], 186 (1), pp. 55–69.

van Campen, D. H., Bouwman, V. P., Zhang, G. Q., Zhang, J., and ter Weeme, B. J. W., 2002, “Semi-Analytical Stability Analysis of Doubly-Curved Orthotropic Shallow Panels—Considering the Effects of Boundary Conditions,” Int. J. Non-Linear Mech.

[CrossRef]37 , pp. 659–667.

Chia, C. Y., 1987, “Non-Linear Free Vibration and Postbuckling of Symmetrically Laminated Orthotropic Imperfect Shallow Cylindrical Panels With Two Adjacent Edges Simply Supported and the Other Edges Clamped,” Int. J. Solids Struct.

[CrossRef], 23 , pp. 1123–1132.

Librescu, L., and Chang, M.-Y., 1993, “Effects of Geometric Imperfections on Vibration of Compressed Shear Deformable Laminated Composite Curved Panels,” Acta Mech.

[CrossRef], 96 , pp. 203–224.

Librescu, L., Lin, W., Nemeth, M. P., and Starnes, J. H., 1996, “Vibration of Geometrically Imperfect Panels Subjected to Thermal and Mechanical Loads,” J. Spacecr. Rockets, 33 , pp. 285–291.

Sheeinman, I., and Reichman, Y., 1992, “A Study of Buckling and Vibration of Laminated Shallow Curved Panels,” Int. J. Solids Struct.

[CrossRef], 29 (11), pp. 1329–1338.

Soldatos, K. P., and Messina, A., 2000, “The Influence of Boundary Conditions and Transverse Shear on the Vibration of Angle-Ply Laminated Plates, Circular Cylinders and Cylindrical Panels,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 2385–2409.

Wang, X., 1999, “Numerical Analysis of Moving Orthotropic Thin Plates,” Comput. Struct.

[CrossRef], 70 , pp. 467–486.

Kubenko, V. D., and Koval’chuk, P. S., 2004, “Influence of Initial Geometric Imperfections on the Vibrations and Dynamic Stability of Elastic Shells,” Int. Appl. Mech.

[CrossRef], 40 (8), pp. 847–877.

Kayuk, Ya. F., and Hijnyak, V. K., 1990, “Nonlinear Vibration of the Rectangular Plate Caused by Action of Mobile Loading,” Int. Appl. Mech., 26 (6), pp. 122–125.

Awrejcewicz, J., and Krys’ko, V. A., 2003, "*Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells*", Springer-Verlag, Berlin.

Amabili, M., 2005, “Nonlinear Vibrations of Circular Cylindrical Panels,” J. Sound Vib.

[CrossRef], 281 , pp. 509–535.

Mukherjee, S., and Kollmann, F. G., 1985, “A New Rate Principle Suitable for Analysis of Inelastic Deformation of Plates and Shells,” ASME J. Appl. Mech., 52 , pp. 533–535.

Bao, Z., Mukherjee, S., Roman, M., and Aubry, N., 2004, “Nonlinear Vibrations of Beams, Strings, Plates, and Membranes Without Initial Tension,” ASME J. Appl. Mech.

[CrossRef], 71 , pp. 551–559.

Rossikhin, Yu. A., and Shitikova, M. V., 2006, “Analysis of Free Non-Linear Vibrations of a Viscoelastic Plate Under the Conditions of Different Internal Resonances,” Int. J. Non-Linear Mech.

[CrossRef], 41 , pp. 313–325.

Cederbaum, G., 1991, “Dynamic Instability of Viscoelastic Orthotropic Laminated Plates,” Compos. Struct.

[CrossRef], 19 , pp. 131–44.

Sun, Y. X., and Zhang, S. Y., 2001, “Chaotic Dynamic Analysis of Viscoelastic Plates,” Int. J. Mech. Sci.

[CrossRef], 43 , pp. 1195–1208.

Cederbaum, G., and Touati, D., 2002, “Postbuckling Analysis of Imperfect Non-Linear Viscoelastic Cylindrical Panels,” Int. J. Non-Linear Mech.

[CrossRef], 37 , pp. 757–762.

Kim, T.-W., and Kim, J.-H., 2002, “Nonlinear Vibration of Viscoelastic Laminated Composite Plates,” Int. J. Solids Struct.

[CrossRef], 39 , pp. 2857–2870.

Eshmatov, Kh., 1991, "*Integrated Method of Mathematical Modelling of Problems of Dynamics of Viscoelastic Systems*" (in Russian), Avtoreferat diss. doc. teh. Nauk, Kiev.

Badalov, F. B., Eshmatov, Kh., and Yusupov, M., 1987, “About Some Methods of the Decision of Systems Integro-Differential Equations Meeting in Problems Viscoelasticity,” J. Appl. Math. Mech.

[CrossRef], 51 , pp. 867–871.

Verlan, A. F., and Eshmatov, B. Kh., 2005, “Mathematical Simulation of Oscillations of Orthotropic Viscoelastic Plates With Regards to Geometric Nonlinearity,” Int. J. Electro. Mode., 27 (4), pp. 3–17.