Yang, P. C., Norris, C. H., and Stavsky, Y., 1966, “Elastic Wave Propagation in Heterogeneous Plates,” Int. J. Solids Struct.

[CrossRef], 2 , pp. 665–684.

Srinivas, S., 1973, “A Refined Analysis of Composite Laminates,” J. Sound Vib., 30 , pp. 495–507.

Toledano, A., and Murakami, H., 1987, “Composite Plate Theory for Arbitrary Laminate Configurations,” ASME J. Appl. Mech., 54 , pp. 181–189.

Li, X., and Lue, D., 1992, “An Improved Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates,” ASME J. Appl. Mech., 54 , pp. 502–509.

Robbins, D. H., and Reddy, J. N., 1993, “Modeling of Thick Composites Using a Layer-Wise Laminate Theory,” Int. J. Numer. Methods Eng.

[CrossRef], 36 , pp. 655–677.

Di Sciuva, M., 1984, “A Refined Transverse Shear Deformation Theory for Multilayered Anisotropic Plates,” Atti Accad. Sci. Torino, 118 , pp. 279–295.

Lue, D., and Li, X., 1996, “An Overall View of Laminate Theories Based on Displacement Hypothesis,” , 30 , pp. 1539–1560.

Bhaskar, K., and Varadan, T. K., 1989, “Refinement of Higher Order Laminated Plate Theories,” AIAA J., 27 , pp. 1830–1831.

Di Sciuva, M., 1992 “Multilayered Anisotropic Plate Models With Continuous Interlaminar Stress,” Comput. Struct.

[CrossRef], 22 , pp. 149–167.

Lee, C. Y., and Liu, D., 1991, “Interlaminar Shear Stress Continuity Theory for Laminated Composite Plates,” AIAA J., 29 , pp. 2010–2012.

Cho, M., and Parmerter, R. R., 1993, “Efficient Higher Order Plate Theory for General Lamination Configurations,” AIAA J., 31 , pp. 1299–1308.

Carrera, E., 2003, “A Historical Review of Ziz-Zag Theories for Multilayered Plates and Shells,” Appl. Mech. Rev.

[CrossRef], 56 , pp. 287–308.

Ambartsumyan, S. A., 1970, "*Theory of Anisotropic Plates*", J.E.Ashton ed. Technomic, Stanford, CT, pp. 176–180.

Reddy, J. N., 1984, “A Simple Higher-Order Theory for Laminated Composites,” ASME J. Appl. Mech., 51 , pp. 745–752.

Toledano, A., and Murakami, H., 1988, “Shear Deformable Two-Layer Plate Theory With Interlayer Slip,” ASCE J. Eng. Mech., 114 , pp. 604–623.

Cheng, Z., Jemah, A. K., and Williams, F. W., 1996a, “Theory of Multilayered Anisotropic Plates With Weakened Interfaces,” ASME J. Appl. Mech., 63 , pp. 1019–1026.

Di Sciuva, M., 1997, “A Geometrically Nonlinear Theory of Multilayered Plates With Interlayer Slip,” AIAA J., 35 , pp. 1753–1759.

Sun, C. T., and Whitney, J. M., 1976, “Dynamic Response of Laminated Composite Plates Under Initial Stress,” AIAA J., 14 , pp. 199–203.

Yang, I. H., and Kuo, W. S., 1993, “Stability and Vibration of Initially Stressed Thick Laminated Plates,” J. Sound Vib.68 , pp. 285–297.

Di Sciuva, M., 1993, “A General Quadrilateral Multi-Layered Antisotropic Plate element With Continuous Interlaminar Stresses,” Comput. Struct.

[CrossRef]47 , pp. 91–105.

Di Sciuva, M., and Icardi, U., 1995, “Analysis of Thick Multi-Layered Anisotropic Plates by a Higher Order Plate Element,” AIAA J., 33 , pp. 2435–2437.

Polit, O., and Touratier, M., 2000, “Higher Order Triangular Sandwich Plate Finite Elements for Linear and Nonlinear Analysis,” Comput. Methods Appl. Mech. Eng., 85 , pp. 305–324.

Cho, M., and Parmerter, R. R., 1994, “Finite Element for Composite Plate Bending Based on Efficient Higher Order Theory,” AIAA J., 32 , pp. 2241–2245.

Specht, B., 1988, “Modified Shape Functions for the Three Nodded Plate Bending Element Passing the Patch Test,” Int. J. Numer. Methods Eng.

[CrossRef], 26 , pp. 705–715.

Carrera, E., and Demasi, L., 2002, “Multilayered Finite Plate Element Based on Reissner Mixed Variational Theorem, Part I: Theory and Part II: Numerical analysis,” Int. J. Numer. Methods Eng.

[CrossRef], 55 , pp. 191–231, and Carrera, E., and Demasi, L., 2002, “Multilayered Finite Plate Element Based on Reissner Mixed Variational Theorem, Part I: Theory and Part II: Numerical analysis,” Int. J. Numer. Methods Eng., 55 pp. 253–291.

Carrera, E., 1999, “Transverse Normal Stress Effect in Multilayered Plates,” J. Appl. Mech., 66 , pp. 1004–1012.

Chakrabarti, A., and Sheikh, A. H., 2002, “A New Triangular Element Based on a Layer Wise Zigzag Theory for the Analysis of Composite Panels having Sandwich Construction,” "*Proceedings of the International Conference on Ship and Ocean Technology*", IIT Kharagpur, India, December 18-20, pp. 267-272.

Corr, R. B., and Jennings, A., 1976, “A Simultaneous Iteration Algorithm for Symmetric Eigenvalue Problems,” Int. J. Numer. Methods Eng.

[CrossRef], 10 , pp. 647–663.

Wu, C. P., and Chen, W. Y., 1994, “Vibration and Stability of Laminated Plates Based on a Local High Order plate Theory,” J. Sound Vib.

[CrossRef], 177 , pp. 503–520.

Cho, K. N., Bert, C. W., and Striz, A. G., 1991, “Free Vibrations of Laminated Rectangular Plates Analyzed by High Order Individual-Layer Theory,” J. Sound Vib.

[CrossRef], 145 , pp. 429–442.

Srinivas, S., and Rao, A. K., 1970, “Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates,” Int. J. Solids Struct.

[CrossRef]6 , pp. 1463–1481.

Cheng, Z., Howson, W. P., and Williams, F. W., 1997, “Modelling of Weakly Bonded Laminated Composite Plates at large Deflections,” Int. J. Solids Struct., 34 , pp. 3583–3599.

Di Sciuva, M., 1986, “Bending, Vibration and Buckling of Simply supported Thick Multilayered Orthotropic Plates: An evaluation of a new displacement model,” J. Sound Vib.

[CrossRef], 105 , pp. 425–442.