0
TECHNICAL BRIEFS

SMA Hybrid Composites for Dynamic Response Abatement Applications

[+] Author and Article Information
Travis L. Turner

Structural Acoustics Branch, MS 463, NASA Langley Research Center, Hampton Virginia 23681-2199, USA

J. Vib. Acoust 127(3), 273-279 (Jun 01, 2005) (7 pages) doi:10.1115/1.1888588 History: Received July 23, 2002; Revised October 08, 2004; Online May 18, 2005

Abstract

A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of shape memory alloy hybrid composite (SMAHC) structures are briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also applicable to modeling restrained or free recovery. Numerical results are shown for glass-epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and noise transmission are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. The SMAHC approach is shown to be significantly more effective in the dynamic response abatement applications than the conventional approaches. The impetus for the control is an extremely weight-efficient stiffening effect, which makes the SMAHC approach ideally suited for the difficult problem of low-frequency vibration and noise control. Extremely wideband control may be possible by combined SMAHC-conventional or SMAHC-active approaches because of the complementary control mechanisms.

Copyright © 2005 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In