0
TECHNICAL PAPERS

Axisymmetric Dynamic Stability of Rotating Sandwich Circular Plates

[+] Author and Article Information
Horng-Jou Wang, Lien-Wen Chen

Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan Republic of China

J. Vib. Acoust 126(3), 407-415 (Jul 30, 2004) (9 pages) doi:10.1115/1.1688765 History: Received July 01, 2002; Revised November 01, 2003; Online July 30, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, USA.
Evan-Iwanowski, R. M., 1976, Resonance Oscillations in Mechanical Systems, Elsevier, Amsterdam, Holland.
Tani,  J., and Nakamura,  T., 1978, “Dynamic Stability of Annular Plates Under Periodic Radial Loads,” J. Acoust. Soc. Am., 64, pp. 827–831.
Tani,  J., and Nakamura,  T., 1978, “Parametric Resonance of Annular Plates Under Pulsating Uniform Internal and External Loads With Different Periods,” J. Sound Vib., 60, pp. 289–297.
Tani,  J., and Nakamura,  T., 1980, “Dynamic Stability of Annular Plates Under Pulsating Torsion,” ASME J. Appl. Mech., 47, pp. 595–600.
Tani,  J., and Doki,  H., 1982, “Dynamic Stability of Orthotropic Annular Plates Under Pulsating Radial Loads,” J. Acoust. Soc. Am., 72, pp. 845–850.
Tani,  J., 1981, “Dynamic Stability of Orthotropic Annular Plates Under Pulsating Torsion,” J. Acoust. Soc. Am., 69, pp. 1688–1694.
Chen,  L. W., and Juang,  D. P., 1987, “Axisymmetric Dynamic Stability of a Bimodulus Thick Circular Plate,” Comput. Struct., 26, pp. 933–939.
Chen,  L. W., and Hwang,  J. R., 1988, “Axisymmetric Dynamic Stability of Transversely Isotropic Mindlin Circular Plates,” J. Sound Vib., 121, pp. 307–315.
Chen,  L. W., and Hwang,  J. R., 1988, “Axisymmetric Dynamic Stability of Polar Orthotropic Thick Circular Plates,” J. Sound Vib., 125, pp. 555–563.
Chen,  L. W., Hwang,  J. R., and Doong,  J. L., 1989, “Asymmetric Dynamic Stability of Thick Annular Plates Based on a High-Order Plate Theory,” J. Sound Vib., 130, pp. 425–437.
Roy,  P. K., and Ganesan,  N., 1993, “A Vibration and Damping Analysis of Circular Plates With Constrained Damping Layer Treatment,” Comput. Struct., 49, pp. 269–274.
Yu,  S. C., and Huang,  S. C., 2001, “Vibration of a Three-Layered Viscoelastic Sandwich Circular Plate,” Int. J. Mech. Sci., 43, pp. 2215–2236.
Seubert,  S. L., Anderson,  T. J., and Smelser,  R. E., 2000, “Passive Damping of Spinning Disks,” J. Vib. Control, 6, pp. 715–725.
Wang,  H. J., and Chen,  L. W., 2002, “Vibration and Damping Analysis of a Three-Layered Composite Annular Plate With a Viscoelastic Mid-Layer,” Compos. Struct., 58, pp. 563–570.
Wang,  H. J., and Chen,  L. W., 2003, “Axisymmetric Dynamic Stability of Sandwich Circular Plates,” Compos. Struct., 59, pp. 99–107.
Lin,  R. M., and Lim,  M. K., 1996, “Complex Eigensensitivity-Based Characterization of Structures With Viscoelastic Damping,” J. Acoust. Soc. Am., 100, pp. 3182–3191.
Stevens,  K. K., and Evan-Iwanowski,  R. M., 1969, “Parametric Resonance of Viscoelastic Columns,” Int. J. Solids Struct., 5, pp. 755–765.
Irie,  T., Yamada,  G., and Aomura,  S., 1980, “Natural Frequencies of Mindlin Circular Plates,” ASME J. Appl. Mech., 47, pp. 652–655.
Pardoen,  G. C., 1978, “Asymmetric Vibration and Stability of Circular Plates,” Comput. Struct., 9, pp. 89–95.
Liu,  C. F., Lee,  J. F., and Lee,  Y. T., 2000, “Axisymmetric Vibration Analysis of Rotating Annular Plates by a 3D Finite Element,” Int. J. Solids Struct., 37, pp. 5813–5827.

Figures

Grahic Jump Location
The rotating annular plate with constrained damping layer
Grahic Jump Location
The axisymmetric discrete layer annular finite element: (a) basic element (b) three-layered element
Grahic Jump Location
Nondimensional natural frequencies ω̃vs. static in-plane load Ko. (a) Thick host plate, b̃=10; (b) thin host plate, b̃=100. Key: –, with no treatment; [[dashed_line]], with treatment. (ξ̃=0.25,h̃2=h̃3=0.2,ρ̃2=0.5,ρ̃3=1,Ẽ2s=6×10−6(ω/2π)0.494,Ẽ2l=9×10−6(ω/2π)0.494,Ẽ3=1,ν13=0.3,Kt=0).
Grahic Jump Location
Width of instability region ΔΘ̃vs. rotational speed Ω̃. Key: –, with no treatment; [[dashed_line]], with treatment. (ξ̃=0.25,b̃=100,h̃2=h̃3=0.2,ρ̃2=0.5,ρ̃3=1,Ẽ2s=6×10−6(ω/2π)0.494,Ẽ2l=9×10−6(ω/2π)0.494,Ẽ3=1,ν13=0.3,Ko=1,Kt=1).
Grahic Jump Location
The values of Kt* and Θ̃*vs. rotational speed Ω̃. Key: –, Kt*; [[dashed_line]], Θ̃*.(ξ̃=0.25,b̃=100,h̃2=h̃3=0.2,ρ̃2=0.5,ρ̃3=1,Ẽ2s=6×10−6(ω/2π)0.494,Ẽ2l=9×10−6(ω/2π)0.494,Ẽ3=1,ν13=0.3,Ko=1).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In