Structural Dynamics Optimization Based on a Hybrid Inverse Synthesis Method Using a Quadratic Approximation

[+] Author and Article Information
Alain Schorderet, Thomas Gmür

Faculté des Sciences et techniques de l’ingénieur (STI), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

J. Vib. Acoust 126(2), 253-259 (May 04, 2004) (7 pages) doi:10.1115/1.1688759 History: Received April 01, 2002; Revised October 01, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Stetson,  K. A., and Palma,  G. E., 1976, “Inversion of First-Order Perturbation Theory and Its Application to Structural Design,” AIAA J., 14(4), pp. 454–460.
Sandström, R. E., 1981, “Inverse Perturbation Methods for Vibration Analysis,” Optimization of Distributed Parameter Structures, E. J. Haug and J. Cea, eds., Alphen aan de Rijn, The Netherlands, 2 , pp. 1539–1552.
Sandström,  R. E., and Anderson,  W. J., 1982, “Modal Perturbation Methods for Marine Structures,” SNAME Trans.,90, pp. 41–54.
Kim,  K.-O., and Anderson,  W. J., 1984, “Generalized Dynamic Reduction in Finite Element Dynamic Optimization,” AIAA J., 22(11), pp. 1616–1617.
Hoff,  C. J., Bernitsas,  M. M., Sandström,  R. E., and Anderson,  W. J., 1984, “Inverse Perturbation Method for Structural Redesign With Frequency and Mode Shape Constraints,” AIAA J., 22(9), pp. 1304–1309.
Bernitsas,  M. M., and Kang,  B., 1991, “Admissible Large Perturbations in Structural Redesign,” AIAA J., 29(1), pp. 104–113.
Alzahabi,  B., and Bernitsas,  M. M., 2001, “Redesign of Cylindrical Shells by Large Admissible Perturbations,” J. Ship Res., 45(3), pp. 177–186.
Schorderet, A., 1997, “Synthèse modale et problème inverse en dynamique des structures,” Ph.D. Thesis 1698, Ecole polytechnique fédérale de Lausanne, Lausanne.
Gmür,  Th., 1990, “A Subspace Forward Iteration Method for Solving the Quadratic Eigenproblem Associated With the FDE Formulation,” Int. J. Numer. Methods Eng., 29(5), pp. 935–951.
Gmür, Th., and Schorderet, A., 1996, “MAFE—A Code for Modal Analysis by Finite Elements (Including Substructuring),” Users’ manual, Ecole polytechnique fédérale de Lausanne, Lausanne.


Grahic Jump Location
Schematic geometry of the motorcycle frame
Grahic Jump Location
FE modelling of the motorcycle frame
Grahic Jump Location
FE modelling of the initial plate
Grahic Jump Location
FE mesh for the ribbed plate
Grahic Jump Location
Bending mode shape of the lateral arms of the motorcycle frame at 290.2 Hz
Grahic Jump Location
First bending mode shape of the initial plate at 407.6 Hz
Grahic Jump Location
First bending mode shape of the ribbed plate at 509.5 Hz (+25%)
Grahic Jump Location
Error comparison for the ribbed plate




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In