0
TECHNICAL PAPERS

Modeling of Granular Particle Damping Using Multiphase Flow Theory of Gas-Particle

[+] Author and Article Information
C. J. Wu

School of Mechanical Engineering, Xian Jiaotong University, Xian, Shaanxi, P. R. China

W. H. Liao, M. Y. Wang

Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong

J. Vib. Acoust 126(2), 196-201 (May 04, 2004) (6 pages) doi:10.1115/1.1688763 History: Received December 01, 2001; Revised November 01, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Popplewell,  N., and Semergicil,  S. E., 1989, “Performance of the Bean Bag Impact Damper for a Sinusoidal External Force,” J. Sound Vib., 133, pp. 193–223.
Panossian,  H. V., 1992, “Structural Damping Enhancement via Non-Obstructive Particle Damping Technique,” ASME J. Vibr. Acoust., 114, pp. 101–105.
Simonian, S. S., 1995, “Particle Beam Damper,” Proc. SPIE Conference on Smart Structures and Materials: Passive Damping, SPIE, 2445 , pp. 149–160.
Yokomichi,  I., Araki,  Y., Jinnouchi,  Y., and Inoue,  J., 1996, “Impact Dampers with Granular Materials for Multibody System,” ASME J. Pressure Vessel Technol., 118, pp. 95–103.
Papalou,  A., and Masri,  S. F., 1996, “Performance of Particle Dampers under Random Excitation,” ASME J. Vibr. Acoust., 118, pp. 614–621.
Papalou,  A., and Masri,  S. F., 1998, “An Experimental Investigation of Particle Dampers under Harmonic Excitation,” J. Vib. Control, 4, pp. 361–379.
Hollkamp, J. J., and Gordan, R. W., 1998, “Experiments with Particle Damping,” Proc. SPIE Conference on Smart Structures and Materials: Passive Damping and Isolation, SPIE, 3327 , pp. 2–12.
Friend,  R. D., and Kinra,  V. K., 2000, “Particle Impact Damping,” J. Sound Vib., 233, pp. 93–118.
Fowler, B. L., Flint, E. M., and Olson, S. E., 2000, “Effectiveness and Predictability of Particle Damping,” Proc. SPIE Conference on Smart Structures and Materials: Damping and Isolation, SPIE, 3989 , pp. 356–367.
Fowler, B. L., Flint, E. M., and Olson, S. E., 2001, “Design Methodology for Particle Damping,” Proc. SPIE Conference on Smart Structures and Materials: Damping and Isolation, SPIE. 4331 , pp. 186–197.
Chen, T., Mao, K., Huang, X., and Wang, M. Y., 2001, “Dissipation Mechanisms of Non-Obstructive Particle Damping Using Discrete Element Method,” Proc. SPIE Conference on Smart Structures and Materials: Damping and Isolation, SPIE, 4331 , pp. 294–301.
Salueña, C., Pöschel, T., Esipov, S. E., and Simonian, S., 1998, “Dissipative Properties of Granular Ensembles,” Proc. SPIE Conference on Smart Structures and Materials: Passive Damping and Isolation, SPIE, 3327 , pp. 23–29.
Salueña, C., Esipov, S. E., Rosenkranz, D., and Panossian, H., 1999, “On Modeling of Arrays of Passive Granular Dampers,” Proc. SPIE Conference on Smart Structures and Materials: Passive Damping and Isolation, SPIE, 3672 , pp. 32–42.
Fan, L. S., and Zhu, C., 1998, Principles of Gas-Solid Flows, Cambridge University Press, Cambridge, UK.
Blevins, R. D., 1990, Flow-Induced Vibration, 2nd ed., Von Nostrand Reinhold, New York.
Sarpkaya,  T., 1986, “Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan-Carpenter Number,” J. Fluid Mech., 165, pp. 61–71.
Inman, D. J., 2000, Engineering Vibration, 2nd ed., Prentice Hall, New Jersey.
Srinivasan, P., 1996, Nonlinear Mechanical Vibrations, John Wiley & Sons, New York.

Figures

Grahic Jump Location
Sketch of a cantilever particle-damping beam
Grahic Jump Location
Velocity responses of the beam without and with particles for αmp=50%
Grahic Jump Location
Velocity responses of the beam without and with particles for αmp=75%
Grahic Jump Location
Velocity responses of the beam without and with particles for αmp=95%
Grahic Jump Location
Dissipated energy of the beam without and with particles versus number of cycle
Grahic Jump Location
Specific damping capacity of the beam with particles versus dimensionless acceleration amplitude
Grahic Jump Location
Sketch of the measurement system
Grahic Jump Location
Velocity responses of the beam without particles
Grahic Jump Location
Velocity responses of the beam with particles for αmp=50%
Grahic Jump Location
Velocity responses of the beam with particles for αmp=75%
Grahic Jump Location
Velocity responses of the beam with particles for αmp=95%

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In