Prediction of Time-Varying Vibroacoustic Energy Using a New Energy Approach

[+] Author and Article Information
F. Sui, M. N. Ichchou

Laboratoire de Tribologie et Dynamique des Systèmes, Département de Mécanique des Solides, Génie Mécanique et Génie Civil, École Centrale de Lyon, Ecully Cedex, France

J. Vib. Acoust 126(2), 184-189 (May 04, 2004) (6 pages) doi:10.1115/1.1687399 History: Received October 01, 2002; Revised April 01, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Fahy, F., 2002, “Guide for Potential Users of SEA,” Proceeding of ISMA 2002, Vol. 2, pp. 723–728.
Lyon, R. H., 1975, Statistical Energy Analysis of Dynamical Systems: Theory and Application, MIT Press, Cambridge, Massachusetts.
Fahy,  F., 1994, “Statistical Energy Analysis: A Critical Overview,” Philos. Trans. R. Soc. London, A346, pp. 431–447.
Nefske, D. J., and Sung, S. H., 1987, “Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams,” NCA Publication.
Wohlever,  J. C., and Bernhard,  R. J., 1992, “Mechanical Energy Flow Models of Rods and Beams,” J. Sound Vib., 153, pp. 1–19.
Carcaterra,  A., and Sestieri,  A., 1995, “Energy Density Equations and Power Flow in Structures,” J. Sound Vib., 188, pp. 269–282.
Le Bot,  A., 1998, “A Vibroacoustic Model for High Frequency Analysis,” J. Sound Vib., 211(4), pp. 537–554.
Ichchou,  M. N., Le Bot,  A., and Jezequel,  L., 1997, “Energy Models of One-Dimensional Multi-Propagative Systems,” J. Sound Vib., 201, pp. 535–554.
Xing, J. T., and Price, W. G., 1998, “The Energy Flow Equation of Continuum Dynamics,” IUTAM Symposium on Statistical Energy Analysis, Southampton, UK 8–11 July, 1997, F. J. Fahy and W. G. Price, eds., Kluwer.
Xing,  J. T., and Price,  W. G., 1999, “A Power Flow Analysis Based on Continuum Dynamics,” Philos. Trans. R. Soc. London, A455, pp. 401–436.
Langley,  R. S., 1995, “On the Vibrational Conductivity Approach to High Frequency Dynamics for Two-Dimensional Structural Components,” J. Sound Vib., 182, pp. 637–657.
Manning,  J. E., and Lee,  K., 1968, “Predicting Mechanical Shock Transmission,” Shock Vibration Bulletin, 37(4), pp. 65–70.
Lai,  M. L., and Soom,  A., 1990, “Prediction of Transient Vibration Envelopes Using Statistical Energy Analysis Techniques,” ASME J. Vibr. Acoust., 112, pp. 127–137.
Lai,  M. L., and Soom,  A., 1990, “Statistical Energy Analysis for the Time Integrated Transient Response of Vibrating Systems,” ASME J. Vibr. Acoust., 112, pp. 206–213.
Pinnington,  R. J., and Lednik,  D., 1996, “Transient Statistical Energy Analysis of an Impulsively Excited Two Oscillator System,” J. Sound Vib., 189(2), pp. 249–264.
Pinnington,  R. J., and Lednik,  D., 1996, “Transient Energy Flow Between Two Coupled Beams,” J. Sound Vib., 189(2), pp. 265–287.
Weaver,  R. L., 1990, “Diffusivity of Ultrasound in Polycrystals,” J. Mech. Phys. Solids, 33, pp. 55–86.
Ryzhik,  L., Papanicolaou,  G., and Keller,  J. B., 1996, “Transport Equations for Elastic and Other Waves in Random Media,” Wave Motion, 24, pp. 327–370.
Falk,  R. S., and Richter,  G. R., 1999, “Explicit Finite Element Method for Symmetric Hyperbolic Equation,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 36, pp. 935–952.
Savin, E., 2002, “Transient Transport Equations of the Energy Observables in Heterogeneous Structures,” 9th International Congress on Sound and Vibration, Orlando, FL, July 08–11.
Morse, K. U., and Feshbach, H., 1953, Methods of Theoretical Physics. Mc-Graw Hill, New York.
Sui,  F., Ichchou,  M. N., and Jezequel,  L., 2002, “Prediction of Vibroacoustics Energy Using a Discretized Transient Local Energy Approach and Comparison With TSEA,” J. Sound Vib., 251(1), pp. 163–180.
Ichchou,  M. N., Le Bot,  A., and Jezequel,  L., 2001, “A Transient Local Energy Approach as an Alternative to Transient SEA: Wave and Telegraph Equations,” J. Sound Vib., 246(5), pp. 829–840.
Bodin,  E., Brévart,  B., Wagstaff,  P., and Borello,  G., 2002, “Pyrotechnic Shock Response Predictions Combining Statistical Energy Analysis and Local Random Phase Reconstruction,” J. Acoust. Soc. Am., 112(1), pp. 156–163.


Grahic Jump Location
Characteristic of new energy equation
Grahic Jump Location
The initial energy density
Grahic Jump Location
Beam subjected to a transverse unit impulse
Grahic Jump Location
Prediction of time history of energy density at l=0.6 L. [[dotted_line]], exact result; –, new energy equation; [[dot_dash_line]], diffusion equation.
Grahic Jump Location
Prediction of pass-time by TLEA energy equation
Grahic Jump Location
SRS comparison among three methods




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In