0
TECHNICAL PAPERS

Application of a Nonlinear Modal Instability Approach to Brake Systems

[+] Author and Article Information
Jean-Jacques Sinou, Fabrice Thouverez, Louis Jezequel

Laboratoire de Tribologie et Dynamique des Systèmes, Equipe Dynamique des Structures et des Systèmes, Ecole Centrale de Lyon, 69134 Ecully Cedex, France

J. Vib. Acoust 126(1), 101-107 (Feb 26, 2004) (7 pages) doi:10.1115/1.1596555 History: Received July 01, 2002; Revised January 01, 2003; Online February 26, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pierre,  C., Ferri,  A. A., and Dowell,  E. H., 1985, “Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method,” ASME J. Appl. Mech., 52, pp. 958–964.
Cameron,  T. M., and Griffin,  J. H., 1989, “An Alternating Frequency/Time Domain Method for Calculating the Steady State Response of Nonlinear Dynamic,” ASME J. Appl. Mech., 56, pp. 149–154.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley & Sons, New-York.
Nayfeh, A. H., and Balachandran, B., 1995, Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods, John Wiley & Sons.
Guckenheimer, J., and Holmes, P., 1986, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag.
Jezequel,  L., and Lamarque,  C. H., 1991, “Analysis of Non-linear Dynamical Systems by the Normal Form Theory,” J. Sound Vib., 149, pp. 429–459.
Yu,  P., 1998, “Computation of Normal Forms via a Perturbation Technique,” J. Sound Vib., 211, pp. 19–38.
Sinou,  J. J., Thouverez,  F., and Jézéquel,  L., 2003, “Center Manifold and Multivariable Approximants Applied to Non-Linear Stability Analysis,” Int. J. Non-Linear Mech., 38/9, pp. 1421–1442.
Baker, G. A., and Graves-Morris, P., 1996, Padé Approximants, Cambridge University Press, Cambridge.
Brezinski,  C., 1983, “Extrapolation Algorithms and Padé Approximations: A Historical Survey,” Applied Numerical Mathematics, 20, pp. 299–318.
Boudot,  J. P., Carneiro,  A., and Jézéquel,  L., 1998, “Analyze des phénomènes intervenant dans la stabilité des systèmes de freinage. Influence des non-linéarités,” JEF95, Journées Européennes de Freinage, Edition AGIR, Lille, 1, pp. 213–224.
Boudot, J. P., 1995, “Modélisation des bruits de freinage des véhicules Industriels,” Thèse de Doctorat, No. 1995-08, Ecole Centrale de Lyon, Ecully.
Sinou, J-J., 2002, “Synthèse non-linéaire des systèmes vibrants. Application aux systèmes de freinage,” Thèse de Doctorat, No. 2002-23, Ecole Centrale de Lyon, Ecully.
Rosenberg,  R. M., 1962, “The Normal Modes of Nonlinear n-Degree-of-Freedom Systems,” ASME J. Appl. Mech., 82, pp. 7–14.
Rosenberg,  R. M., 1966, “On Non-Linear Vibrations of Systems with Many Degree of Freedom,” Adv. Appl. Mech., 9, pp. 155–242.
Szemplinska-Stupinicka,  W., 1979, “The Modified Single Mode Method in the Investigation of the Resonant Vibration of Non-Linear Systems,” J. Sound Vib., 104(2), pp. 475–489.
Szemplinska-Stupinicka, W., 1990, The Behavior of Nonlinear Vibrating Systems, Kluwer Academic.
Shaw,  S. W., and Pierre,  C., 1993, “Normal Modes for Non-Linear Vibratory Systems,” J. Sound Vib., 164(1), pp. 85–124.
Iwan,  W. D., 1973, “A Generalization of the Concept of Equivalent Linearization,” Int. J. Non-Linear Mech., 8, pp. 279–287.
Ibrahim,  R. A., 1994, “Friction-Induced Vibration, Chatter, Squeal and Chaos: Part II-Dynamics and Modeling,” ASME J. Appl. Mech., 47(7), pp. 227–253.
Oden,  J. T., and Martins,  J. A. C., 1985, “Models and Computational Methods for Dynamic friction Phenomena,” Comput. Methods Appl. Mech. Eng., 52, pp. 527–634.
Crolla, D. A., and Lang, A. M., “Brake Noise and Vibration-State of Art,” Tribologie Series 18, Vehicle Tribology, Paper VII, pp. 165–174, Dowson, Taylor & Godet, eds., Elsevier.
Spurr,  R. T., 1961–1962, “A Theory of Brake Squeal,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.), 1, pp. 33–40.
Sridhar,  B., and Jordan,  D., 1973, “An Algorithm for Calculation of the Jordan Canonical Form of a Matrix,” Comput. & Elect. Engng, 1, pp. 239–254.
Bogoliubov, N., and Mitropolski, A., 1961, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.
Spanos,  P-T. D., and Iwan,  W. D., 1978, “On the Existence and Uniqueness of Solutions Generated by Equivalent Linearization,” Int. J. Non-Linear Mech., 13, pp. 71–78.
Iwan,  W. D., and Patula,  F. J., 1972, “The Merit of Different Minimization Criteria in Approximate Analysis,” ASME J. Appl. Mech., 39, pp. 257–262.
Spanos,  P-T. D., and Iwan,  W. D., 1979, “Harmonic Analysis of Dynamic Systems with Nonsymmetric Nonlinearities,” ASME J. Dyn. Syst., Meas., Control, 101, pp. 31–36.

Figures

Grahic Jump Location
Dynamic model of braking system
Grahic Jump Location
Coupling of two eigenvalues
Grahic Jump Location
Evolution of the real part of two coupling modes
Grahic Jump Location
Stability analysis as a function of the brake friction coefficient and the sprag-slip angle
Grahic Jump Location
Stability analysis as a function of the brake friction coefficient and the stiffness k11
Grahic Jump Location
Stability analysis as a function of the stiffness k11 and the sprag-slip angle
Grahic Jump Location
Stability analysis as a function of the braking force Fbrake and the stiffness k11
Grahic Jump Location
Stability analysis as a function of the mass m1 and the stiffness k11
Grahic Jump Location
Stability analysis as a function of the braking force Fbrake and the stiffness k12
Grahic Jump Location
Evolution of the real part of the unstable eigenvalue
Grahic Jump Location
Evolution of the imaginary part of the unstable eigenvalue
Grahic Jump Location
X-limit cycle for μ̄=μ0/100
Grahic Jump Location
Y-limit cycle for μ̄=μ0/100
Grahic Jump Location
X-limit cycle μ̄=μ0/100 as a function of angle θ
Grahic Jump Location
Y-limit cycle μ̄=μ0/100 as a function of angle θ

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In