0
TECHNICAL PAPERS

Control of Nonlinear Electro/Elastic Beam and Plate Systems (Finite Element Formulation and Analysis)

[+] Author and Article Information
D. W. Wang, H. S. Tzou

Department of Mechanical Engineering, StrucTronics Lab., University of Kentucky, Lexington, KY 40506-0503

H.-J. Lee

Structures and Acoustics Division, NASA Glenn Research Center, Cleveland, OH 44135-3191

J. Vib. Acoust 126(1), 63-70 (Feb 26, 2004) (8 pages) doi:10.1115/1.1640357 History: Received May 01, 2002; Revised May 01, 2003; Online February 26, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tzou, H. S., and Fukuda, T. (Editors), 1992, Precision Sensors, Actuators, and Systems, Kluwer Academic Publishers, Dordrecht/Boston/London.
Gabbert, U., and Tzou, H. S. (Editors), 2001, Smart Structures and Structronic Systems, Kluwer Academic Publishers, Dordrecht/Boston/London.
Tzou, H. S., 1993, Piezoelectric Shells: Distributed Sensing and Control of Continua, Kluwer Academic Publishers, Boston/Dordrecht.
Tzou,  H. S., and Bao,  Y., 1997, “Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part-1: Nonlinear Anisotropic Piezothermoelastic Shell Laminates,” ASME J. Vibr. Acoust., 119, pp. 374–381.
Howard,  R. V., Chai,  W. K., and Tzou,  H. S., 2001, “Modal Voltages of Linear and Nonlinear Structures Using Distributed Artificial Neurons (A Theoretical and Experimental Study),” Mech. Syst. Signal Process., 15(3), pp. 629–640.
Tzou,  H. S., and Zhou,  Y., 1997, “Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part-2: Control of Nonlinear Buckling and Dynamics,” ASME J. Vibr. Acoust., 119, pp. 382–389.
Zhou,  Y. H., and Tzou,  H. S., 2000, “Control of Nonlinear Piezoelectric Circular Shallow Spherical Shells,” Journal of Solids and Structures, 37, pp. 1663–1677.
Tzou,  H. S., and Wang,  D. W., 2002, “Micro-sensing Characteristics and Modal Voltages of Linear/nonlinear Toroidal Shell,” J. Sound Vib., 254(2), pp. 203–218.
Trindade,  M. A., Benjeddou,  A., and Ohayon,  R., 2001, “Finite Element Modelling of Hybrid Active-passive Vibration Damping of Multilayer Piezoelectric Sandwich Beams-Part II: System Analysis,” Int. J. Numer. Methods Eng., 51(7), pp. 855–864.
Sze,  K. Y., and Pan,  Y. S., 1999, “Hybrid Finite Element Models for Piezoelectric Materials,” J. Sound Vib., 226, pp. 519–547.
Tzou,  H. S., and Tseng,  C. I., 1990, “Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach,” J. Sound Vib., 138(1), pp. 17–34.
Tzou,  H. S., and Ye,  R., 1994, “Piezothermoelasticity and Precision Control of Active Piezoelectric Laminates,” ASME J. Vibr. Acoust., 114, pp. 489–495.
Tzou,  H. S., and Ye,  R., 1996, “Analysis of Piezoelastic Structures with Laminated Piezoelectric Triangle Shell Elements,” AIAA J., 34, pp. 110–115.
Ye,  R., and Tzou,  H. S., 2000, “Control of Adaptive Shells with Thermal and Mechanical Excitations,” J. Sound Vib., 231(5), pp. 1321–1338.
Tzou,  H. S., Wang,  D. W., and Chai,  W. K., 2002, “Dynamics and Distributed Control of Conical Shells Laminated with Full and Diagonal Actuators,” J. Sound Vib., 256(1), pp. 65–79.
Liu,  M. L., and To,  C. W. S., 1995, “Hybrid Strain Based Three Node Flat Triangular Shell Element-I. Nonlinear Theory and Incremental Formulation,” Comput. Struct., 54(6), pp. 1031–1056.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, New Jersey, Chap. 6.
Ikeda, T., 1990, Fundamentals of Piezoelectricity, Oxford University Press, New York.
Craig, R. R. Jr., 1981, Structural Dynamics: An Introduction to Computer Methods, John Wiley & Sons, New York, NY.
Cook, R. B., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley & Sons, New York.
Sze,  K. Y., and Yao,  L. Q., 2000, “A Hybrid Stress ANS Solid-shell Element and Its Generalization for Smart Structure Modelling. Part I-Solid-shell Element Formulation,” Int. J. Numer. Methods Eng., 48, pp. 545–564.
Stolarski,  H., and Belytschko,  T., 1983, “Shear and Membrane Locking in Curved C0 Elements,” Comput. Methods Appl. Mech. Eng., 41, pp. 279–296.
Simo,  J. C., and Rifai,  S., 1990, “A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes,” Int. J. Numer. Methods Eng., 29, pp. 1595–1638.
Bischoff,  M., and Ramm,  E., 1997, “Shear Deformable Shell Elements For Large Strains And Rotations,” Int. J. Numer. Methods Eng., 40, pp. 4427–4449.
Hauptmann,  R., and Schweizerhof,  K., 1998, “A Systematic Development of ‘Solid-Shell’ Element Formulations for Linear and Nonlinear Analysis Employing Only Displacement Degree of Freedom,” Int. J. Numer. Methods Eng., 42, pp. 49–69.
Harnau,  M., and Schweizerhof,  K., 2002, “About Linear and Quadratic ‘Solid-Shell’ Elements at Large Deformations,” Comput. Struct., 80, pp. 805–817.
Surana, K. S., 1983, FINESSE (Finite Element System for Nonlinear Analysis) Theoretical Manual, McDonell Douglas Automation Company, St. Louis.
Blandford,  G. E., and Glass,  G., 1987, “Static/Dynamic Analysis of Locally Buckled Frames,” Journal of Structural Engineering, 113, pp. 363–381.
Bathe,  K. J., Ramm,  E., and Wilson,  E. L., 1975, “Finite Element Formulations for Large Deformation Dynamic Analysis,” Int. J. Numer. Methods Eng., 9, pp. 353–386.
Bathe, K. J., Wilson, E. L., and Iding, R. H., 1974, “NONSAP, A Structural Analysis Program for Static and Dynamic Response of Nonlinear System,” Report No. SESM 74-3, Structural Engineering Laboratory, University of California, Berkeley, CA.
To,  C. W. S., and Liu,  M. L., 1995, “Hybrid Strain Based Three Node Flat Triangular Shell Element-II. Numerical Investigation of Nonlinear Problems,” Comput. Struct., 54(6), pp. 1057–1076.

Figures

Grahic Jump Location
A laminated piezoelectric shell element
Grahic Jump Location
A cantilever single-layered beam
Grahic Jump Location
A cantilever laminated piezoelastic beam
Grahic Jump Location
Tip static deflections of single-layered/laminated piezoelastic beams
Grahic Jump Location
Linear/nonlinear transient responses of the cantilever beam
Grahic Jump Location
Controlled transient response of the piezoelastic beam (Load=2 N/m2)
Grahic Jump Location
Controlled transient response of the piezoelastic beam (Load=10 N/m2)
Grahic Jump Location
Controlled transient response of the piezoelastic beam (Load=20 N/m2)
Grahic Jump Location
A simply supported rectangular plate with piezoelectric control layers
Grahic Jump Location
Linear transient center displacement responses of single layer plate
Grahic Jump Location
Linear/nonlinear transient responses of the elastic plate
Grahic Jump Location
Linear/nonlinear transient responses of the piezoelastic plate
Grahic Jump Location
Nonlinear controlled transient response of piezoelastic plate (load=10 N)
Grahic Jump Location
Nonlinear controlled transient response of piezoelastic plate (load=25 N)
Grahic Jump Location
Nonlinear controlled transient response of piezoelastic plate (load=44.54 N)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In