Determining Stability Boundaries Using Gyroscopic Eigenfunctions

[+] Author and Article Information
Anthony A. Renshaw

Dept. of Mechanical Engng. Columbia University, New York, NY 10027

J. Vib. Acoust 125(3), 405-407 (Jun 18, 2003) (3 pages) doi:10.1115/1.1569944 History: Received August 01, 2002; Revised January 01, 2003; Online June 18, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Meirovitch,  L., 1975, “A Modal Analysis for the Response of Linear Gyroscopic Systems,” ASME J. Appl. Mech., 42(2), pp. 446–450.
Wickert,  J. A., and Mote,  C. D., 1990, “Classical Vibration Analysis of Axially Moving Continua,” ASME J. Appl. Mech., 57, pp. 738–744.
Renshaw,  A. A., 1997, “Modal Decoupling of Systems Described by Three Linear Operators,” ASME J. Appl. Mech., 64, pp. 238–240.
Hryniv,  R. O., Lancaster,  P., and Renshaw,  A. A., 1999, “A Stability Criterion for Parameter Dependent Gyroscopic Systems,” ASME J. Appl. Mech., 66, pp. 660, 664.
Jha,  R. K., and Parker,  R. G., 2000, “Spatial Discretization of Axially Moving Media Vibration Problems,” ASME J. Vibr. Acoust., 122, pp. 290–294.
Lee,  K.-Y., and Renshaw,  A. A., 1999, “Solution of the Moving Mass Problem Using Complex Eigenfunction Expansions,” ASME J. Appl. Mech., 67, pp. 823–827.
Lee,  K.-Y., and Renshaw,  A. A., 2002, “A Numerical Comparison of Alternative Galerkin Methods for Eigenvalue Estimation,” J. Sound Vib., 253(2), pp. 359–372.
Parker,  R. G., and Lin,  Y., 2001, “Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations,” ASME J. Appl. Mech., 68, pp. 49–57.
Mockensturm,  E. M., Perkins,  N. C., and Ulsoy,  A. G., 1996, “Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings,” ASME J. Vibr. Acoust., 118, pp. 346–351.
Lee, K.-Y., and Renshaw, A. A., 2002, “Stability Analysis or Parametrically Excited Systems Using Spectral Collocation,” J. Sound Vib., to appear.
Iwan,  W. D., and Moeller,  T. L., 1976, “The Stability of a Spinning Elastic Disk with a Transverse Load System,” ASME J. Appl. Mech., 43, pp. 485–490.
Renshaw,  A. A., and Mote,  C. D., 1992, “Absence of One Nodal Diameter Critical Speed Modes in an Axisymmetric Rotating Disk,” ASME J. Appl. Mech., 59, pp. 687–688.
Mote,  C. D., 1970, “Stability of Circular Plates Subjected to Moving Loads,” J. Franklin Inst., 290(4), pp. 329–344.
Renshaw,  A. A., and Mote,  C. D., 1996, “Local Stability of Gyroscopic Systems Near Vanishing Eigenvalues,” ASME J. Appl. Mech., 63, pp. 116–120.
Tian,  J. F., and Hutton,  S. G., 2001, “Cutting-Induced Vibration in Circular Saws,” J. Sound Vib., 242(5), pp. 907–922.
Stone,  E., and Askari,  A., 2002, “Nonlinear Models of Chatter in Drilling Processes,” Dynamical Systems, 17 (1), pp. 65–85.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In