0
TECHNICAL PAPERS

On the Absorption Coefficient of Porous Corrugated Surfaces

[+] Author and Article Information
Francisco Simón, Rosa M. Rodrı́guez, Jaime Pfretzschner

Instituto de Acústica (CSIC). C. Serrano, 144. 28006 Madrid, Spain

J. Vib. Acoust 124(3), 329-333 (Jun 12, 2002) (5 pages) doi:10.1115/1.1471528 History: Received November 01, 2000; Revised February 01, 2002; Online June 12, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Meyer,  E., Buchmann,  G., and Schoch,  A., 1940, “Eine neue Schluckanordnung hoher Wirksamkeit und der Bau eines schallgedämpften Raumes,” Akust. Z., 5, pp. 352–364.
Beranek,  L. L., and Sleeper,  H. P., 1946, “The Design and Construction of Anechoic Sound Chambers,” J. Acoust. Soc. Am., 18, pp. 140–150.
Kurtze,  G., 1952, “Untersuchungen zur Verbesserung der Auskleidung schallgedämpfter Räume,” Acustica, 3, AB, pp. 104–107.
Meyer,  E., Kurze,  G., Severein,  H., and Tamm,  K., 1953, “Ein neuer grosser reflexionsfreier Raum für Schallwellen und kurze elektromagnetischen Wellen,” Acustica, 3, AB, pp. 409–430.
Schröder,  F. K., 1953, “Der Schallschluckgrad als Funktion des Schalleinfallswinkels,” Acustica, 3, pp. 54–66.
Epprecht,  G., Kurze,  G., and Lauber,  A., 1954, “Bau eines reflexionsfreien Raumes für Schallwellen und elektrische Dezimeterwellen,” Acustica, 4, AB, pp. 567–572.
Rivin,  N., 1962, “An Anechoic Chamber for Acoustical Measurements,” Sov. Phys. Acoust., 7(3), pp. 258–268.
Bell,  E. C. , 1972, “The Steady—State Evaluation of Small Anechoic Chambers,” Appl. Acoust., 6, pp. 91–109.
Easwaran,  V., and Munjal,  M. L., 1993, “Finite Element Analysis of Wedges Used in Anechoic Chambers,” J. Sound Vib., 160(2), pp. 333–350.
Koidan,  W., Hruska,  G. R., and Picket,  M. A., 1972, “Wedge Design for National Bureau of Standards Anechoic Chambers,” J. Sound Vib., 52, pp. 1070–1076.
Kang,  Y. J., and Bolton,  J. S., 1996, “Optimal Design of Acoustical Foam Treatments,” ASME J. Vibr. Acoust., 118, pp. 498–504.
Ingard, U., 1996, Sound Absorption Technology, Chapter 4, Noise Control Foundation, New York.
Attenborough,  K., 1983, “Acoustical Characteristics of Rigid Fibrous Absorbents and Granular Materials,” J. Acoust. Soc. Am., 73(3), pp. 785–799.
Berengier,  M. C., Stinson,  M. R., Daigle,  G. A., and Hamet,  J. F., 1997, “Porous Road Pavements: Acoustical Characterization and Propagation Effects,” J. Acoust. Soc. Am., 101(1), pp. 155–162.
Delany,  M. E., and Bazley,  E. N., 1970, “Acoustical Properties of Fibrous Absorbent Materials,” Appl. Acoust., 3, pp. 105–116.
Attenborough,  K., 1983, “Acoustical Characteristics of Rigid Fibrous Absorbents and Granular Materials,” J. Acoust. Soc. Am., 73(3), pp. 785–99.
Jonshon,  D. L., 1987, “Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media,” J. Fluid Mech., 176, pp. 379–402.
Biot,  M. A., 1956, “The Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Media, I, Low Frequency Range, II, Higher Frequency Range,” J. Acoust. Soc. Am., 28, pp. 168–171.
Champoux,  Y., and Stinson,  M. R., 1992, “On Acoustical Models for Sound Propagation in Rigid Frame Porous Materials and the Influence of Shape Factors,” J. Acoust. Soc. Am., 92(2), pp. 1120–1131.
Attenborough,  K., 1993, “Models for the Acoustical Properties of Air Saturated Granular Media,” Acta Acust. (Beijing), 1, pp. 213–26.
Pfretzschner,  J., and Rodriguez,  R. M., 1999, “Acoustics Properties of Rubber Crumbs,” Polym. Test., 18, pp. 81–92.
ISO 9053:1991, Acoustics-Materials for Acoustical Applications-Determination of Airflow Resistance.
ISO 10534-1:1996, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 1: Method Using Standing Wave Ratio.

Figures

Grahic Jump Location
Ridgy sample with test specimen indicated
Grahic Jump Location
Sample profile. External surface is approximated by a stepped profile.
Grahic Jump Location
Convergence of acoustic absorption with increasing number of steps relative to M=1200
Grahic Jump Location
Acoustical absorption coefficient as a function of frequency of cylindrical wedges of glass wool. σ=5600 Pa⋅s⋅m−2,d=0.1 m.
Grahic Jump Location
Acoustical absorption coefficient, as a function of frequency of cylindrical wedges of glass wool. σ=5600 Pa⋅s⋅m−2,d=0.1 m.
Grahic Jump Location
Acoustical absorption coefficient as a function of frequency of cylindrical wedges of glass wool. σ=5600 Pa⋅s⋅m−2,d=0.1 m.
Grahic Jump Location
Acoustical absorption coefficient as a function of frequency of rubber crumb samples. q2=1.5,Ω=0.54,σ=3000 Pa⋅s⋅m−2,d=0.1 m,sρ=2.5,sk=0.35 Continuous line: bmin=0.05 m,bmax=0.12 m,V=0.03 m. Dashed line: cylindrical specimen. Where sρ is an adjustable parameter which is connected to the viscosity dependence inside the material and the adjustable parameter sk is the termal pore shape factor 14.
Grahic Jump Location
Acoustical absorption coefficient as a function of frequency of a cylindrical wedge of glass wool. σ=8400 Pa⋅s⋅m−2,d=0.1 m. Curve a: results for the wedge, and curve b: wedge with an air gap (sketch dimensions in cm.).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In