0
TECHNICAL PAPERS

Guided Waves in Thin-Walled Structural Members

[+] Author and Article Information
A. H. Shah, W. Zhuang

Dept. of Civil and Geological Engineering, Univ. of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6

N. Popplewell

Dept. of Mechanical and Industrial Engineering, Univ. of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6

J. B. C. Rogers

Acres, Winnipeg, Manitoba, Canada

J. Vib. Acoust 123(3), 376-382 (Jan 01, 2001) (7 pages) doi:10.1115/1.1376720 History: Received November 01, 1999; Revised January 01, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bai, H., Shah, A. H., Popplewell, N., and Datta, S. K., (to appear), “Scattering of Guided Waves by Circumferential Cracks in Steel Pipes,” ASME J. Appl. Mech.
Datta,  S. K., Shah,  A. H., and Karunasena,  W., 1999, “Ultrasonic Waves and Material Defect Characterization in Composite Plates,” Mech. Compos. Mater., 6, pp. 1–16.
Mindlin, R. D., 1960, “Waves and Vibrations in Isotropic, Elastic Solids,” Goodier, J. N. and Noff, N., eds., Proceedings of the 1st Symposium on Naval Structural Mechanics, Pergamon Press, Oxford, pp. 199–232.
Newman,  E. G., and Mindlin,  R. D., 1957, “Vibration of a Monoclinic Crystal Plate,” J. Acoust. Soc. Am., 29, pp. 1206–1218.
Kaul,  R. K., and Mindlin,  R. D., 1962a, “Vibrations of an Infinite, Monoclinic Crystal Plate at High Frequencies and Long Wavelengths,” J. Acoust. Soc. Am., 34, pp. 1895–1901.
Kaul,  R. K., and Mindlin,  R. D., 1962b, “Frequency Spectrum of a Monoclinic Crystal Plate,” J. Acoust. Soc. Am., 34, pp. 1902–1910.
Dong,  S. B., and Huang,  K. H., 1985, “Edge Vibrations in Laminated Composite Plates,” ASME J. Appl. Mech., 52, pp. 433–438.
Datta,  S. K., Shah,  A. H., Bratton,  R. L., and Chakraborty,  T., 1988, “Wave Propagation in Laminated Composite Plates,” J. Acoust. Soc. Am., 83, pp. 2020–2026.
Gazis,  D. C., 1959, “Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders,” I-Analytical Foundation, II-Numerical Results, J. Acoust. Soc. Am., 31, pp. 568–578.
Huang,  K. H., and Dong,  S. B., 1984, “Propagating Waves and Edge Vibrations in Anisotropic Cylinders,” J. Sound Vib., 96, pp. 363–379.
Rattanawangcharoen,  N., Shah,  A. H., and Datta,  S. K., 1992, “Wave Propagation in Laminated Composite Circular Cylinders,” Int. J. Solids Struct., 29, pp. 767–781.
Mal, A. K., and Ting, T. C. T., eds., 1988, Wave Propagation in Structural Composites, ASME, New York.
Datta, S. K., Achenbach, J. D., and Rajapakse, Y. S., eds., 1990, Elastic Waves and Ultrasonic Nondestructive Evaluation, North-Holland, Amsterdam.
Kapania,  R. K., and Raciti,  S., 1989, “Recent Advances in Analysis of Laminated Beam and Plates,” AIAA J., 27, pp. 935–946.
Soldatos,  K. P., 1994, “Review of Three-Dimensional Dynamic Analysis of Circular Cylinders and Cylindrical Shells,” Appl. Mech. Rev., 47, pp. 501–516.
Chimanti,  D. E., 1997, “Guided Waves in Plates and Their Use in Materials Characterization,” Appl. Mech. Rev., 50, pp. 247–284.
Maji,  A. K., Satpathi,  D., and Kratochvil,  T., 1997, “Acoustic Emission Source Location Using Lamb Wave Modes,” ASCE, J. Eng. Mech., 123, pp. 154–161.
Cheung, Y. K., 1976, Finite Strip Method in Structural Analysis, Pergamon Press, New York.
Daniel,  A. N., Doyle,  J. F., and Rizzi,  S. A., 1996, “Dynamic Analysis of Folded Plate Structures,” ASME J. Vibr. Acoust., 118, pp. 519–598.
Gibson, R. F., 1994, Principles of Composite Material Mechanics, McGraw-Hill, Inc., New York.
Timoshenko, S. P., and Woinowsky, K., 1959, Theory of Plates and Shells, McGraw-Hill Inc., New York.
Bathe, K. J., 1996, Finite Element Procedure, Prentice Hall, New Jersey.
Zhu,  J., Shah,  A. H., and Datta,  S. K., 1995, “Modal Representation of Two-dimensional Elastodynamic Green’s Functions,” ASCE, J. Eng. Mech., 121, pp. 26–36.
Graff, K. F., 1975, Wave Motion in Elastic Solids, Oxford University Press, Ely House, London W. I.
Taweel,  H., Dong,  S. B., and Kazic,  M., 2000, “Wave Reflection from the Free End of a Cylinder with an Arbitrary Cross-section,” Int. J. Solids Struct., 37, pp. 1701–1726.

Figures

Grahic Jump Location
Plate geometry in the local and global coordinate systems
Grahic Jump Location
The inplane and bending elements
Grahic Jump Location
The cross-sectional geometry of the structural members (a) I-shaped cross section (b) L-shaped cross section
Grahic Jump Location
Frequency spectrum for an orthotropic, rectangular strip ••• thick dots: symmetric; ⋯ thin dots: antisymmetric; ○○○ circles: analytical. (a) inplane motion (b) bending motion.
Grahic Jump Location
Frequency spectra for an isotropic I-shaped cross section ••• thick dots: stiffness method; ○○○ circles: SAFE; [[dashed_line]]dashed lines: simple theories. (a) extension (S-S) (b) torsion (A-A) (c) flexure about the Z-axis (A-S) (d) flexure about the Y-axis (S-A).
Grahic Jump Location
Frequency spectra for an orthotropic L-shaped cross section ••• thick dots: stiffness method; ○○○ circles: SAFE. (a) symmetry about the X-Z plane (b) antisymmetry about the X-Z plane.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In