Vakakis, A. F., and Gendelman, O., 2001, “Energy ‘Pumping’ in Coupled Mechanical Oscillators II: Resonance Capture,” ASME J. Appl. Mech., (in press).

Arnold, V. I., ed., 1988, *Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Vol. 3*, Springer Verlag, Berlin and New York.

Morozov, A. D., 1998, *Quasi-conservative Systems, Cycles, Resonances and Chaos*, Series on Nonlinear Science, Series A, Vol. 30, World Scientific, Singapore.

Gendelman, O., 2001, “Transition of Energy to Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators,” Nonlinear Dyn., (in press).

Gendelman, O., Manevitch, L. I., Vakakis, A. F., and M’Closkey, R., 2001, “Energy ‘Pumping’ in Coupled Mechanical Oscillators I: Dynamics of the Underlying Hamiltonian Systems,” ASME J. Appl. Mech., (in press).

Tanaka,
N., and Kikushima,
Y., 1991, “Active Wave Control of a Flexible Beam,” JSME Int. J., 34(2), pp. 159–167.

Tanaka,
N., and Kikushima,
Y., 1999, “Optimal Vibration Feedback Control of an Euler-Bernulli Beam: Toward Realization of the Active Sink Method,” ASME J. Vibr. Acoust., 121, pp. 174–182.

Yigit,
A. S., and Choura,
S., 1995, “Vibration Confinement in Flexible Structures via Alteration of Mode Shapes by Using Feedback,” J. Sound Vib., 179(4), pp. 553–567.

Choura,
S. A., and Yigit,
A. S., 1995, “Vibration Confinement in Flexible Structures by Distributed Feedback,” Comput. Struct., 54(3), pp. 531–540.

Hodges,
C. H., 1982, “Confinement of Vibration by Structural Irregularity,” J. Sound Vib., 82(3), pp. 411–424.

Pierre,
C., and Dowell,
E. H., 1987, “Localization of Vibrations by Structural Irregularity,” J. Sound Vib., 114(3), pp. 549–564.

Photiadis,
D. M., 1992, “Anderson Localization of One-dimensional Wave Propagation on a Fluid-loaded Plate,” J. Acoust. Soc. Am., 91(2), pp. 771–780.

Vakakis, A. F., Manevitch, L. I., Mikhlin, Yu. V., Pilipchuck, V., Zevin, A., 1996, *Normal Modes and Localization in Nonlinear Systems*, Wiley Interscience, New York.

Nayfeh, A. H., and Mook, D., 1984, *Nonlinear Oscillations*, Wiley Interscience, New York.

Nayfeh,
S. A., and Nayfeh ,
A. H., 1994, “Energy Transfer from High- to Low-frequency Modes in a Flexible Structure via Modulation,” ASME J. Vibr. Acoust., 116, pp. 203–207.

Mead,
D. J., 1975, “Wave Propagation and Natural Normal Modes in Periodic Systems: I. Mono-coupled Systems,” J. Sound Vib., 40(1), pp. 1–18.

Vakakis,
A. F., El-Raheb,
M., and Cetinkaya,
C., 1994, “Free and Forced Dynamics of a Class of Periodic Elastic Systems,” J. Sound Vib., 172(1), pp. 23–46.

Visco,
D. P., and Sen,
S., 1998, “Dynamics of an Anharmonic Oscillator that is Harmonically Coupled to a Many-body System and the Notion of an Appropriate Heat Bath,” Phys. Rev. E, 57(1), pp. 224–228.

Thorp,
J. S., Seyler,
C. E., and Phadke,
A. G., 1998, “Electromechanical Wave Propagation in Large Electric Power Systems,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 45(6), pp. 614–622.

Ludeke,
C. A., and Wagner,
W. S., 1968, “The Generalized Duffing Equation with Large Damping,” Int. J. Non-Linear Mech., 3, pp. 383–395.

Cap,
F., 1974, “Averaging Method for the Solution of Non-linear Differential Equations with Periodic Non-harmonic Functions,” Int. J. Non-Linear Mech., 9, pp. 441–450.

Yuste,
S. B., and Bejarano,
J. D., 1990, “Improvement of a Krylov-Bogoliubov Method that uses Jacobi Elliptic Functions,” J. Sound Vib., 139(1), pp. 151–163.

Chen,
S. H., and Cheung,
Y. K., 1996, “An Elliptic Perturbation Method for Certain Strongly Non-linear Oscillators,” J. Sound Vib., 192(2), pp. 453–464.

Manevitch, L. I., 2001, “Description of Localized Normal Modes in the Chain of Nonlinear Coupled Oscillators Using Complex Variables,” Nonlinear Dyn., (in press).

Lee,
K. H., 1972, “Dynamics of Harmonically Bound Semi-infinite and Infinite Chains with Friction and Applied Forces,” J. Math. Phys., 13(9), pp. 1312–1315.

Wang,
Y. Y., and Lee,
K. H., 1973, “Propagation of a Disturbance in a Chain of Interacting Harmonic Oscillators,” Am. J. Phys., 41, pp. 51–54.

Bleistein, N., and Handelsman, R. A., 1986, *Asymptotic Expansions of Integrals*, Dover publication, New York.

Sen,
S., Sinkovits,
R. S., and Chakravarti,
S., 1996, “Algebraic Relaxation Laws for Classical Particles in 1D Anharmonic Potentials,” Phys. Rev. Lett., 77(24), pp. 4855–4869.

Salenger,
G., Vakakis,
A. F., Gendelman,
O., Manevitch,
L. I., and Andrianov,
I., 1999, “Transitions from Strongly to Weakly Nonlinear Motions of Damped Nonlinear Oscillators,” Nonlinear Dyn., 20, pp. 99–114.