0
TECHNICAL PAPERS

Shilnikov Chaos and Dynamics of a Self-Sustained Electromechanical Transducer

[+] Author and Article Information
J. C. Chedjou

Département de Physique, Faculté des Sciences, Université de Dschang, BP 67, Dschang, Cameroun

P. Woafo, S. Domngang

Département de Physique, Faculté des Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroun

J. Vib. Acoust 123(2), 170-174 (Oct 01, 2000) (5 pages) doi:10.1115/1.1350821 History: Received July 01, 1999; Revised October 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations Wiley, New York.
Woafo,  P., Fotsin,  H. B., and Chedjou,  J. C., 1998, “Dynamics of Two Nonlinearly Coupled Oscillators,” Phys. Scr., 57, pp. 195–200.
Kozlowsky,  J., Parlitz,  U., and Lauterborn,  W., 1995, “Bifurcation Analysis of Two Coupled Periodically Driven Duffing Oscillators,” Phys. Rev. E, 51, pp. 1861–1867.
Poliashenko,  M., and Mckay,  S. R., 1992, “Chaos due to Homoclinic and Heteroclinic Orbits in Two Coupled Oscillators with Nonisochronism,” Phys. Rev. A, 46, pp. 5271–5274.
Chakraborty,  T., and Rand,  R. H., 1988, “The Transition from Phase Locking to Drift in a System of Two Weakly Coupled van der Pol Oscillators,” Int. J. Non-Linear Mech., 28, pp. 369–376.
Pastor-Diàz,  I., and López-Fraguas,  A., 1995, “Dynamics of two coupled van der Pol oscillators,” Phys. Rev. E, 52, pp. 1480–1489.
Kapitaniak,  T., and Steeb,  W. H., 1991, “Transition to hyperchaos in coupled generalized van der Pol equations,” Phys. Lett. A, 152, pp. 33–36.
Woafo,  P., Chedjou,  J. C., and Fotsin,  H. B., 1996, “Dynamics of a System Consisting of a van der Pol Oscillator Coupled to a Duffing Oscillator,” Phys. Rev. E, 54, pp. 5929–5934.
Hasler,  M. J., 1987, “Electrical Circuits with Chaotic Behavior,” Proc. IEEE, 75, pp. 1009–1021.
Hayashi, C., 1964, Nonlinear Oscillations in Physical Systems, 1964, McGraw-Hill, New York.
Parlitz,  U., and Lauterborn,  W., 1987, “Period-doubling Cascades and Devil’s Staircases of the Driven van der Pol Oscillator,” Phys. Rev. A, 36, pp. 1428–1434.
Szemplińska-Stupnicka,  W., and Rudowski,  J., 1994, “Neimark Bifurcation, Almost Periodicity and Chaos in the Forced van der Pol-Duffing System in the Neighborhood of the Principal Resonance,” Phys. Lett. A, 192, pp. 201–206.
Venkatesan,  A., and Lakshmanan,  M., 1997, “Bifurcation and Chaos in the Double-well Duffing van der Pol Oscillator: Numerical and Analytical Studies,” Phys. Rev. E, 56, pp. 6321–6330.
Guckenheimer, J., and Holmes, P. J., 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.
Asfar,  K. R., 1989, “Quenching of Self-excited Vibrations,” ASME J. Vibr. Acoust., 111, pp. 130–133.

Figures

Grahic Jump Location
Scheme of the self-sustained electromechanical transducer
Grahic Jump Location
(a) The steady state R01 versus the damping coefficient ε2 for ε1=0.33;d=0.66;f=0.33;c=0.01;ω12=10. (b) The steady state R02 versus the damping coefficient ε2 for ε1=0.33;d=0.66;f=0.33;c=0.01;ω12=10.
Grahic Jump Location
(a) Typical phase portrait of the electrical part (x) for chaotic behavior for ε1=2.466;ε2=0.00987;c=0;f=3.518;d=0.818;ω12=1. (b) Typical phase portrait of the mechanical part (y) for chaotic behavior for ε1=2.466;ε2=0.00987;c=0;f=3.518;d=0.818;ω12=1.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In