0
TECHNICAL PAPERS

Complex Modal Analysis of Non-Self-Adjoint Hybrid Serpentine Belt Drive Systems

[+] Author and Article Information
Lixin Zhang, Jean W. Zu, Zhichao Hou

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada, M5S 3G8

J. Vib. Acoust 123(2), 150-156 (Nov 01, 2000) (7 pages) doi:10.1115/1.1356697 History: Received April 01, 2000; Revised November 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Skutch,  R., 1897, “Uber die Bewegung Eines Gespannten Fadens, Weicher Gezwungen ist, Durch Zwei Feste Punkte, mit Einer Constanten Geschwindigkeit zu gehen, und Zwischen denselben in Transversal-Schwingungen von Gerlinger Amplitude Versetzt Wird,” Ann. Phys. Chem., 61, pp. 190–195.
Wickert,  J. A., and Mote,  C. D., 1990, “Classical Vibration Analysis of Axially Moving Continua,” ASME J. Appl. Mech., 57, pp. 738–744.
Mote,  C. D., 1966, “On the Non-linear Oscillation of an Axially Moving String,” ASME J. Appl. Mech., 33, pp. 463–464.
Bapat,  V. A., and Srinivasan,  P., 1967, “Non-linear Transverse Oscillation in Traveling Strings by the Method of Harmonic Balance,” ASME J. Appl. Mech., 34, pp. 775–777.
Moon,  J., and Wickert,  J. A., 1997, “Non-linear Vibration of Power Transmission Belts,” J. Sound Vib., 200, pp. 419–431.
Zhang,  L., and Zu,  J. W., 1998, “Nonlinear Vibrations of Viscoelastic Moving Belts, Part I: Free Vibration Analysis,” J. Sound Vib., 216, pp. 75–91.
Zhang,  L., and Zu,  J. W., 1998, “Nonlinear Vibrations of Viscoelastic Moving Belts, Part 2: Forced Vibration Analysis,” J. Sound Vib., 216, pp. 93–105.
Hawker, L. E., 1991, “A Vibration Analysis of Automotive Serpentine Accessory Drive Systems,” Ph.D. dissertation, University of Windsor, Ontario, Canada.
Hwang,  S. J., Perkins,  N. C., Ulsoy,  A. G., and Meckstroth,  R. J., 1994, “Rotational Response and Slip Prediction of Serpentine Belt Drive Systems,” ASME J. Vibr. Acoust., 116, pp. 71–78.
Kraver,  T. C., Fan,  G. W., and Shah,  J. J., 1996, “Complex Modal Analysis of a Flat Belt Pulley System with Belt Damping and Coulomb-Damped Tensioner,” ASME J. Mech. Des., 118, pp. 306–311.
Ulsoy,  A. G., Whitsell,  J. E., and Hooven,  M. D., 1985, “Design of Belt-Tensioner Systems for Dynamic Stability,” ASME J. Vibr. Acoust., 107, pp. 282–290.
Beikmann,  R. S., Perkins,  N. C., and Ulsoy,  A. G., 1996, “Free Vibration of Serpentine Belt Drive Systems,” ASME J. Vibr. Acoust., 118, pp. 406–413.
Zhang,  L., and Zu,  J. W., 1999, “Modal Analysis of Serpentine Belt Drive Systems,” J. Sound Vib., 222, pp. 259–279.
Beikmann,  R. S., Perkins,  N. C., and Ulsoy,  A. G., 1996, “Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems,” ASME J. Vib. Acoust., 118, pp. 567–574.
Pesterev,  A. V., and Bergman,  L. A., 1998, “Response of a Nonconservative Continuous System to a Moving Concentrated Load,” ASME J. Appl. Mech., 65, pp. 436–444.
Yang,  B., 1996, “Integral Formulas for Non-self-adjoint Distributed Dynamic Systems,” Am. Inst. Aeronaut. Astron. J., 34, pp. 2132–2139.

Figures

Grahic Jump Location
A prototypical three-pulley serpentine belt drive system
Grahic Jump Location
Effect of damping ζ (P0=128.7 N,Ω=0)
Grahic Jump Location
Effect of engine speed Ω (P0i=128.7 N,ζ=0.001)
Grahic Jump Location
Effect of initial tension P0i(ζ=0.001,Ω=0)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In