Transforming Complex Eigenmodes into Real Ones Based on an Appropriation Technique

[+] Author and Article Information
E. Foltete, J. Piranda

LMARC, Université de Franche-Comté, UMR CNRS 6604, 24 rue del’Epitaphe, 25000 Besançon, France

J. Vib. Acoust 123(1), 92-97 (Aug 01, 2000) (6 pages) doi:10.1115/1.1320811 History: Received November 01, 1998; Revised August 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Fillod, R., 1980, “Contribution à L’identification des Structures Mécaniques Linéaires,” Thesis, Université de Franche-Comté, Besançon, France, No. 140.
Zhang, Q., and Lallement, G., 1985, “New Method of Determining the Eigen-solutions of the Associated Conservative Structure from the Identified Eigen-solutions,” IIIrd IMAC, Orlando, pp. 322–328.
Ibrahim,  S. R., 1983, “Computations of Normal Modes from Identified Complex Modes,” AIAA J., 21, No. 3, pp. 446–451.
Zhang, Q., and Lallement, G., 1985, “Simultaneous Determination of Normal Eigenmodes and Generalized Damping Matrix from Complex Eigenmodes,” 2nd International Conference of Aeroelasticity, Aacken.
Niedbal, N., 1984, “Analytical Determination of Real Normal Modes from Measured Complex Modes,” Proceedings of the 25th Structures, Structural Dynamics and Materials Conference, Palm Springs, pp. 292–295.
Imregun, M., and Ewins, D. J., 1993, “Realisation of Complex Mode Shapes,” XIth IMAC, pp. 1303–1309.
Ahamadian, H., Gladwell, G. M. L., and Ismail, F., 1995, “Extracting Real Modes From Complex Measured Modes,” XIIIth IMAC, pp. 507–510.
Kozànek,  J., 1987, “The Qualification Number of a Complex Vector,” Mech. Mach. Theory, 22, No. 4, pp. 391–392.
Balmès, E., 1994, “New Results on the Identification of Normal Modes from Experimental Complex Modes,” XIIth IMAC, pp. 1576–1582.
Wei, M. L., Allemang, R. J., and Brown, D. L., 1987, “Real-Normalization of Measured Complex Modes,” Vth IMAC, pp. 708–712.
Fillod,  R., and Piranda,  J., 1978, “Research Method of the Eigenvalues and Generalized Elements of a Linear Mechanical Structure,” Shock Vibr. Bull., 48, No. 3, pp. 5–12.
Ratsifandrihana, L., 1995, “Amélioration des Procédures d’Identification Modale des Structures par Appropriation Automatique et Utilisation de Forces Non-Contro⁁lées,” Ph.D. thesis, Université de Franche-Comté, Besançon, France, No. 456.1995.


Grahic Jump Location
Evolution of parameter k versus frequency (8 DOF)
Grahic Jump Location
Evolution of the criterion versus the number of excitation DOF (8 DDL)
Grahic Jump Location
FRF at excitation point 1 (8 DDL)
Grahic Jump Location
Three base coupled beams
Grahic Jump Location
Nyquist diagram of the FRF 1/1, case 0 to 3 (3 beams)
Grahic Jump Location
Phase scatter diagrams of the third complex mode, case 0 to 3 (3 beams)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In