0
RESEARCH PAPERS

A Study of Control Strategies for the Reduction of Structural Vibration Transmission

[+] Author and Article Information
P. Gardonio, S. J. Elliott

Institute of Sound and Vibration Research, ISVR, University of Southampton, Southampton Hampshire, UK

J. Vib. Acoust 121(4), 482-487 (Oct 01, 1999) (6 pages) doi:10.1115/1.2894006 History: Received November 01, 1998; Online February 26, 2008

Abstract

A theoretical study of the active control of structural vibration transmission in a multiple isolator system comprising a piece of equipment mounted on a base structure via active mounts is presented. Two types of problem have been studied with a common framework: first, the active isolation of vibration transmission from the equipment to the base structure and, second, the active isolation of vibration transmission from the base structure to the equipment. Four different control strategies using the measured axial velocity or/and axial force underneath or at the top of the mounts have been investigated and compared with the effectiveness of the reference control approaches of minimizing the total power transmitted from the equipment to the flexible base structure or minimizing the total kinetic energy of the suspended rigid equipment when driven by the base structure. For the first type of isolation problem the best control is achieved when a cost function which minimizes the weighted mm of the square values of the axial velocities and axial forces is implemented. For the second isolation problem the best control performance is given by the minimization of an estimate of the kinetic energy of the suspended equipment related to the translational degrees of freedom.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In