0
RESEARCH PAPERS

A Theoretical Investigation of the Behavior of Droplets in Axial Acoustic Fields

[+] Author and Article Information
R. I. Sujith, G. A. Waldherr, J. I. Jagoda, B. T. Zinn

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

J. Vib. Acoust 121(3), 286-294 (Jul 01, 1999) (9 pages) doi:10.1115/1.2893978 History: Received May 01, 1995; Revised October 01, 1998; Online February 26, 2008

Abstract

This paper describes a theoretical investigation of the behavior of small droplets in an acoustic field. It was motivated by the increasing interest in the use of pulsations to improve the performance of energy intensive, industrial processes which are controlled by rates of mass momentum and heat transfer. The acoustic field is expected to enhance heat and mass transfer to and from the droplets, probably because of the relative motion between the droplets and the gas phase. Relative motion is traditionally quantified by an entrainment factor which is defined as the ratio between the amplitude of the droplet and the gas phase oscillations, and a phase delay. In an alternate approach, these two quantities are combined into a single quantity called the “degree of opposition” (DOP), which is defined as the ratio of the amplitude of the relative velocity between the droplet and the gas phase to the amplitude of the acoustic velocity. The equation for the droplet motion is solved using two methods; by numerical integration and by using a spectral method. Despite the nonlinear nature of the problem, the results were found not to be sensitive to initial conditions. The DOP was predicted to increase with increasing droplet diameter and frequency. In other words, larger diameters and higher acoustic frequencies reduce the ability of the droplets to follow the gas phase oscillations. The DOP also decreases with increasing acoustic velocity. It was shown that the amplitude of the higher harmonics are very small and that the droplet mean terminal velocity decreases with increasing acoustic velocity. Theoretical predictions were compared with experimental data and good agreement was observed.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In