Dynamic Instability of a Turbine Generator due to Microslip

[+] Author and Article Information
H. L. Wettergren, G. Csaba

Dept. of Mechanical Engineering, Div. of Machine Design, Linköping University, Sweden

J. Vib. Acoust 121(2), 162-168 (Apr 01, 1999) (7 pages) doi:10.1115/1.2893959 History: Received April 01, 1996; Online February 26, 2008


The present paper is concerned with dynamic instability of a turbine generator due to friction between rotor slot wedges and the rotor. When the normal force on the wedge is constant the dissipated energy is of the same type as hysteretic material damping in the sense that for a circular motion excluding gravity it is independent of the rotational frequency, but changes sign when the rotational frequency exceeds the vibrational frequency. The magnitude of the dissipated energy will however depend on the rotational frequency as the normal force does. The transferred energy due to friction is a nonlinear phenomenon and approximately proportional to the amplitude cubed and may be much larger than material damping. It is also shown that when gravity is included or the motion is elliptical the energy transferred is larger than for a simple circular motion.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In