Gas Path Sound Transmission in Spherically-Shaped Reciprocating Compressors: Theory and Experiment

[+] Author and Article Information
F. Pan

Advanced Engineering, Tenneco Automotive, Ann Arbor, MI 48103

J. D. Jones

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288

J. Vib. Acoust 121(1), 8-17 (Jan 01, 1999) (10 pages) doi:10.1115/1.2893954 History: Received November 01, 1995; Online February 26, 2008


Gas pulsations within the refrigerant gas cavity is one of the principal noise propagating paths in reciprocating compressors. This paper provide a physical insight to the relationship between the gas pulsations inside the cavity and noise radiation of reciprocating compressors. The refrigerant gas cavity of the test compressor is modeled as a space between concentric spherical shells and analyzed with modal expansion techniques. Gas pulsations within the cavity are mathematically represented as the forcing terms of the inhomogeneous wave equation in spherical coordinates. The pressure distribution inside the cavity is then estimated accordingly. Based on the orthogonality principles, the noise radiation patterns associated with the gas pulsations are predicted. Acoustic modal analysis, directivity test and running speed sensitivity test are conducted to identify the acoustic characteristics of cavity and to verify the analytical model. The experimental results are in good agreement with the prediction of the analytical model. Thus, the concentric, spherical shell model well describes the acoustic characteristics of cavity within the test compressor. This model can also be employed as a design tool to analyze the effects of system parameter variation on overall noise radiation.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In