Dynamics of a Rotating System With a Nonlinear Eddy-Current Damper

[+] Author and Article Information
Y. Kligerman, O. Gottlieb

Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel

J. Vib. Acoust 120(4), 848-853 (Oct 01, 1998) (6 pages) doi:10.1115/1.2893910 History: Received March 01, 1997; Online February 26, 2008


We investigate the nonlinear dynamics and stability of a rotating system with an electromagnetic noncontact eddy-current damper. The damper is modeled by a thin nonmagnetic disk that is translating and rotating with a shaft in an air gap of a direct current electromagnet. The damper dissipates energy of the rotating system lateral vibration through induced eddy-currents. The dynamical system also includes a cubic restoring force representing nonlinear behavior of rubber o-rings supporting the shaft. The equilibrium state of the balanced rotating system with an eddy-current damper becomes unstable via a Hopf bifurcation and exact solutions for the limit cycle radius and frequency of the self-excited oscillation are obtained analytically. Forced vibration induced by the rotating system mass imbalance is also investigated analytically and numerically. System response includes periodic and quasiperiodic solutions. Stability of the periodic solutions obtained from the balanced self-excited motion and the imbalance forced response is analyzed by use of Floquet theory. This analysis enables an explanation of the nonlinear dynamics and stability phenomena documented for rotating systems controlled by electromagnetic eddy-current dampers.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In