Harmonically Forced Wave Propagation in Elastic Cables With Small Curvature

[+] Author and Article Information
M. Behbahani-Nejad, N. C. Perkins

Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2125

J. Vib. Acoust 119(3), 390-397 (Jul 01, 1997) (8 pages) doi:10.1115/1.2889735 History: Received February 01, 1995; Revised July 01, 1995; Online February 26, 2008


This study presents an investigation of coupled longitudinal-transverse waves that propagate along an elastic cable. The coupling considered derives from the equilibrium curvature (sag) of the cable. A mathematical model is presented that describes the three-dimensional nonlinear response of an extended elastic cable. An asymptotic form of this model is derived for the linear response of cables having small equilibrium curvature. Linear, in-plane response is described by coupled longitudinal-transverse partial differential equations of motion, which are comprehensively evaluated herein. The spectral relation governing propagating waves is derived using transform methods. In the spectral relation, three qualitatively distinct regimes exist that are separated by two cut-off frequencies which are strongly influenced by cable curvature. This relation is employed in deriving a Green’s function which is then used to construct solutions for in-plane response under arbitrarily distributed harmonic excitation. Analysis of forced response reveals the existence of two types of periodic waves which propagate through the cable, one characterizing extension-compressive deformations (rod-type) and the other characterizing transverse deformations (string-type). These waves may propagate or attenuate depending on wave frequency. The propagation and attenuation of both wave types are highlighted through solutions for an infinite cable subjected to a concentrated harmonic excitation source.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In