0
RESEARCH PAPERS

Design Sensitivity Analysis of Structure-Induced Noise and Vibration

[+] Author and Article Information
K. K. Choi, I. Shim

Department of Mechanical Engineering and Center for Computer-Aided Design, The University of Iowa, Iowa City, Iowa 52242

S. Wang

Mechatronics Department, Kwangju Institute of Science and Technology, Kwangju, Korea 506-303

J. Vib. Acoust 119(2), 173-179 (Apr 01, 1997) (7 pages) doi:10.1115/1.2889699 History: Received December 01, 1993; Revised June 01, 1995; Online February 26, 2008

Abstract

A continuum design sensitivity analysis (DSA) method for dynamic frequency responses of structural-acoustic systems is developed using the adjoint variable and direct differentiation methods. A variational approach with a non-self-adjoint operator for complex variables is used to retain the continuum elasticity formulation throughout derivation of design sensitivity results. It is shown that the adjoint variable method is applicable to the variational equation with the non-self-adjoint operator. Sizing design variables such as the thickness and cross-sectional area of structural components are considered for the design sensitivity analysis. A numerical implementation method of continuum DSA results is developed by postprocessing analysis results from established finite element analysis (FEA) codes to obtain the design sensitivity of noise and vibration performance measures of the structural-acoustic systems. The numerical DSA method presented in this paper is limited to FEA and boundary element analysis (BEA) is not considered. A numerical method is developed to compute design sensitivity of direct and modal frequency FEA results. For the modal frequency FEA method, the numerical DSA method provides design sensitivity very efficiently without requiring design sensitivities of eigenvectors. The numerical method has been tested using passenger vehicle problems. Accurate design sensitivity results are obtained for analysis results obtained from established FEA codes.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In