Active Vibration Absorption Using Delayed Resonator With Relative Position Measurement

[+] Author and Article Information
N. Olgac, M. Hosek

Department of Mechanical Engineering, University of Connecticut, Storrs, CT

J. Vib. Acoust 119(1), 131-136 (Jan 01, 1997) (6 pages) doi:10.1115/1.2889680 History: Received April 01, 1995; Online February 26, 2008


A novel active vibration absorption technique, the Delayed Resonator, has been introduced recently as a unique way of suppressing undesired oscillations. It suggests a control force on a mass-spring-damper absorber in the form of a proportional position feedback with a time delay. Its strengths consist of extremely simple implementation of the control algorithm, total vibration suppression of the primary structure against a harmonic force excitation and full effectiveness of the absorber in a semi-infinite range of disturbance frequency, achieved by real-time tuning. All this development work was done using the absolute displacements of the absorber in the feedback. These measurements, however, may be difficult to obtain and for some applications impossible. This paper deals with the operating and design repercussions caused by the substituting of an easier measurement: the relative motion of the absorber with respect to the primary structure. Although the proposition sounds like a trivial extension to the prior work it gives rise to important concerns such as system stability. Theoretical foundations for the Delayed Resonator (DR) are briefly recapitulated and its implementation on a single-degree-of-freedom primary structure disturbed by a harmonic force is discussed utilizing both absolute and relative position measurement of absorber mass. Methods for stability range analysis and transient behavior are presented as design tools. Properties observed for the same system with these two different feedbacks are compared. Another important advantage of the relative position feature is is to decouple the operation of the absorber from the primary structure entirely.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In