0
RESEARCH PAPERS

Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers

[+] Author and Article Information
K. Y. Sanliturk, M. Imregun, D. J. Ewins

Imperial College of Science, Technology and Medicine, Mechanical Engineering Department Exhibition Road, London SW7 2BX, UK

J. Vib. Acoust 119(1), 96-103 (Jan 01, 1997) (8 pages) doi:10.1115/1.2889693 History: Received July 01, 1994; Online February 26, 2008

Abstract

Although considerable effort has been devoted to the formulation of predictive models of friction damper behavior in turbomachinery applications, especially for turbine blades, the problem is far from being solved due to the complex nonlinear behavior of the contact surfaces. This paper primarily focuses on analytical and numerical aspects of the problem and addresses the problem in the frequency domain while exploring the viability of equivalent time-domain alternatives. The distinct features of this work are: (i) the modelling of nonlinear friction damper behavior as an equivalent amplitude-dependent complex stiffness via a first-order harmonic balance method (HBM), (ii) the use of sine sweep excitation in time-marching analysis, (iii) the application of the methodology to numerical test cases, including an idealised 3D turbine blade model with several friction dampers, (iv) the verification of the numerical findings using experimental data, and (v) a detailed assessment of the suitability of HBM for the analysis of structures with friction dampers.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In