0
RESEARCH PAPERS

Performance of Particle Dampers Under Random Excitation

[+] Author and Article Information
A. Papalou, S. F. Masri

Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089-2531

J. Vib. Acoust 118(4), 614-621 (Oct 01, 1996) (8 pages) doi:10.1115/1.2888343 History: Received July 01, 1995; Online February 26, 2008

Abstract

An experimental and analytical study is made of the performance of particle dampers under wide-band random excitation. A small model, provided with a nonlinear auxiliary mass damper, was used to investigate the major system parameters that influence the performance of particle dampers: total auxiliary mass ratio, particle size, container dimension, and the intensity and direction of the excitation. It is shown that properly designed particle dampers, even with a relatively small mass ratio, can considerably reduce the response of lightly damped structures. An approximate analytical solution, which is based on the concept of an equivalent single unit-impact damper, is presented. It is shown that the approximate solution can provide an adequate estimate of the root-mean-square response of the randomly excited primary system when provided with a particle damper that is operating in the vicinity of its optimum range of parameters.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In