0
RESEARCH PAPERS

Muffler Performance Studies Using a Direct Mixed-Body Boundary Element Method and a Three-Point Method for Evaluating Transmission Loss

[+] Author and Article Information
T. W. Wu

Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506

G. C. Wan

The Trane Company, 3600 Pammel Creek Road, La Crosse, Wl 54601-7599

J. Vib. Acoust 118(3), 479-484 (Jul 01, 1996) (6 pages) doi:10.1115/1.2888209 History: Received September 01, 1994; Online February 26, 2008

Abstract

In this paper, a single-domain boundary element method is presented for muffler analysis. This method is based on a direct mixed-body boundary integral formulation recently developed for acoustic radiation and scattering from a mix of regular and thin bodies. The main feature of the mixed-body integral formulation is that it can handle all kinds of complex internal geometries, such as thin baffles, extended inlet/outlet tubes, and perforated tubes, without using the tedious multi-domain approach. The variables used in the direct integral formulation are the velocity potential (or sound pressure) on the regular wall surfaces, and the velocity potential jump (or pressure jump) on any thin-body or perforated surfaces. The linear impedance boundary condition proposed by Sullivan and Crocker (1978) for perforated tubes is incorporated into the mixed-body integral formulation. The transmission loss is evaluated by a new method called “the three-point method.” Unlike the conventional four-pole transfer-matrix approach that requires two separate computer runs for each frequency, the three-point method can directly evaluate the transmission loss in one single boundary-element run. Numerical results are compared to existing experimental data for three different muffler configurations.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In